
@unixroot/usr/bin/fix-qdf
#!/@unixroot/usr/bin/perl

require 5.008_001;
use warnings;
use strict;
use File::Basename;

my $whoami = basename($0);
my $dirname = dirname($0);

if ((@ARGV == 1) && ($ARGV[0] eq '--version'))
{
 exec "$dirname/qpdf", '--version';
 exit 2;
}

my $offset = 0;
my $last_offset = 0;

my $file = shift(@ARGV);
if (defined $file)
{
 open(F, "<$file") or die "$whoami: can't open $file: $!\n";
}
else
{
 $file = 'stdin';
 open(F, "<&STDIN") or die "$whoami: can't dup stdin: $!\n";
}
binmode F;
binmode STDOUT;

my $line = get_line();
if (! ((defined $line) && ($line =~ m/^%PDF-1\.\d+\b/)))
{
 die "$whoami: $file: not a pdf file\n";
}
print $line;
$line = get_line();
die "$whoami: $file: premature EOF\n" unless defined $line;
print $line;
$line = get_line();
if (! ((defined $line) && ($line =~ m/^%QDF-1.\d+\b/)))
{
 die "$whoami: $file: not a qdf file\n";
}
print $line;

my $last_obj = 0;
my @xref = ();

my $stream_start = 0;
my $stream_length = 0;
my $xref_offset = 0;
my $xref_f1_nbytes = 0;
my $xref_f2_nbytes = 0;
my $xref_size = 0;

my $cur_state = 0;
my $st_top = ++$cur_state;
my $st_in_obj = ++$cur_state;
my $st_in_stream = ++$cur_state;
my $st_after_stream = ++$cur_state;
my $st_in_ostream_dict = ++$cur_state;
my $st_in_ostream_offsets = ++$cur_state;
my $st_in_ostream_outer = ++$cur_state;
my $st_in_ostream_obj = ++$cur_state;
my $st_in_xref_stream_dict = ++$cur_state;
my $st_in_length = ++$cur_state;
my $st_at_xref = ++$cur_state;
my $st_before_trailer = ++$cur_state;
my $st_in_trailer = ++$cur_state;
my $st_done = ++$cur_state;

my @ostream = ();
my @ostream_offsets = ();
my @ostream_discarded = ();
my $ostream_idx = 0;
my $ostream_id = 0;
my $ostream_extends = "";

my $state = $st_top;
while (defined($line = get_line()))
{
 if ($state == $st_top)
 {
	if ($line =~ m/^(\d+) 0 obj$/)
	{
	 check_obj_id($1);
	 $state = $st_in_obj;
	}
	elsif ($line =~ m/^xref$/)
	{
	 $xref_offset = $last_offset;
	 $state = $st_at_xref;
	}
	print $line;
 }
 elsif ($state == $st_in_obj)
 {
	print $line;
	if ($line =~ m/^stream$/)
	{
	 $state = $st_in_stream;
	 $stream_start = $offset;
	}
	elsif ($line =~ m/^endobj$/)
	{
	 $state = $st_top;
	}
	elsif ($line =~ m,/Type /ObjStm,)
	{
	 $state = $st_in_ostream_dict;
	 $ostream_id = $last_obj;
	}
	elsif ($line =~ m,/Type /XRef,)
	{
	 $xref_offset = $xref[-1][1];
	 $xref_f1_nbytes = 0;
	 my $t = $xref_offset;
	 while ($t)
	 {
		$t >>= 8;
		++$xref_f1_nbytes;
	 }
 # Figure out how many bytes we need for ostream index.
 # Make sure we get at least 1 byte even if there are no
 # object streams.
 my $max_objects = 1;
 foreach my $e (@xref)
 {
 my ($type, $f1, $f2) = @$e;
 if ((defined $f2) && ($f2 > $max_objects))
 {
 $max_objects = $f2;
 }
 }
 while ($max_objects)
 {
 $max_objects >>=8;
 ++$xref_f2_nbytes;
 }
	 my $esize = 1 + $xref_f1_nbytes + $xref_f2_nbytes;
	 $xref_size = 1 + @xref;
	 my $length = $xref_size * $esize;
	 print " /Length $length\n";
	 print " /W [1 $xref_f1_nbytes $xref_f2_nbytes]\n";
	 $state = $st_in_xref_stream_dict;
	}
 }
 elsif ($state == $st_in_ostream_dict)
 {
	if ($line =~ m/^stream/)
	{
	 $state = $st_in_ostream_offsets;
	}
	else
	{
	 push(@ostream_discarded, $line);
	 if ($line =~ m,/Extends (\d+ 0 R),)
	 {
		$ostream_extends = $1;
	 }
	}
	# discard line
 }
 elsif ($state == $st_in_ostream_offsets)
 {
	if ($line =~ m/^\%\% Object stream: object (\d+)/)
	{
	 check_obj_id($1);
	 $stream_start = $last_offset;
	 $state = $st_in_ostream_outer;
	 push(@ostream, $line);
	}
	else
	{
	 push(@ostream_discarded, $line);
	}
	# discard line
 }
 elsif ($state == $st_in_ostream_outer)
 {
	adjust_ostream_xref();
	push(@ostream_offsets, $last_offset - $stream_start);
	$state = $st_in_ostream_obj;
	push(@ostream, $line);
 }
 elsif ($state == $st_in_ostream_obj)
 {
	push(@ostream, $line);
	if ($line =~ m/^\%\% Object stream: object (\d+)/)
	{
	 check_obj_id($1);
	 $state = $st_in_ostream_outer;
	}
	elsif ($line =~ m/^endstream/)
	{
	 $stream_length = $last_offset - $stream_start;
	 write_ostream();
	 $state = $st_in_obj;
	}
 }
 elsif ($state == $st_in_xref_stream_dict)
 {
	if ($line =~ m,/(Length|W) ,)
	{
	 # already printed
	}
	elsif ($line =~ m,/Size ,)
	{
	 my $size = 1 + @xref;
	 print " /Size $xref_size\n";
	}
	else
	{
	 print $line;
	}
	if ($line =~ m/^stream\n/)
	{
	 my $pack = "(C C$xref_f1_nbytes C$xref_f2_nbytes)";
	 print pack($pack, 0, 0, 0);
	 foreach my $x (@xref)
	 {
		my ($type, $f1, $f2) = @$x;
		$f2 = 0 unless defined $f2;
 my @f1 = ();
 my @f2 = ();
 foreach my $d ([\@f1, $f1, $xref_f1_nbytes],
 [\@f2, $f2, $xref_f2_nbytes])
 {
 my ($fa, $f, $nbytes) = @$d;
 for (my $i = 0; $i < $nbytes; ++$i)
 {
 unshift(@$fa, $f & 0xff);
 $f >>= 8;
 }
 }
		print pack($pack, $type, @f1, @f2);
	 }
	 print "\nendstream\nendobj\n\n";
	 print "startxref\n$xref_offset\n\%\%EOF\n";
	 $state = $st_done;
	}
 }
 elsif ($state == $st_in_stream)
 {
	if ($line =~ m/^endstream$/)
	{
	 $stream_length = $last_offset - $stream_start;
	 $state = $st_after_stream;
	}
	print $line;
 }
 elsif ($state == $st_after_stream)
 {
	if ($line =~ m/^\%QDF: ignore_newline$/)
	{
	 --$stream_length;
	}
	elsif ($line =~ m/^(\d+) 0 obj$/)
	{
	 check_obj_id($1);
	 $state = $st_in_length;
	}
	print $line;
 }
 elsif ($state == $st_in_length)
 {
	if ($line !~ m/^\d+$/)
	{
	 die "$file:$.: expected integer\n";
	}
	my $new = "$stream_length\n";
	$offset -= length($line);
	$offset += length($new);
	print $new;
	$state = $st_top;
 }
 elsif ($state == $st_at_xref)
 {
	my $n = scalar(@xref);
	print "0 ", $n+1, "\n0000000000 65535 f \n";
	for (@xref)
	{
	 my ($type, $f1, $f2) = @$_;
	 printf("%010d 00000 n \n", $f1);
	}
	$state = $st_before_trailer;
 }
 elsif ($state == $st_before_trailer)
 {
	if ($line =~ m/^trailer <</)
	{
	 print $line;
	 $state = $st_in_trailer;
	}
	# no output
 }
 elsif ($state == $st_in_trailer)
 {
	if ($line =~ m/^ \/Size \d+$/)
	{
	 print " /Size ", scalar(@xref) + 1, "\n";
	}
	else
	{
	 print $line;
	}
	if ($line =~ m/^>>$/)
	{
	 print "startxref\n$xref_offset\n\%\%EOF\n";
	 $state = $st_done;
	}
 }
 elsif ($state == $st_done)
 {
	# ignore
 }
}

die "$whoami: $file: premature EOF\n" unless $state == $st_done;

sub get_line
{
 my $line = scalar(<F>);
 if (defined $line)
 {
	$last_offset = $offset;
	$offset += length($line);
 }
 $line;
}

sub check_obj_id
{
 my $cur_obj = shift;
 if ($cur_obj != $last_obj + 1)
 {
	die "$file:$.: expected object ", $last_obj + 1, "\n";
 }
 $last_obj = $cur_obj;
 push(@xref, [1, $last_offset]);
}

sub adjust_ostream_xref
{
 pop(@xref);
 push(@xref, [2, $ostream_id, $ostream_idx++]);
}

sub write_ostream
{
 my $first = $ostream_offsets[0];
 my $onum = $ostream_id;
 my $offsets = "";
 my $n = scalar(@ostream_offsets);
 for (@ostream_offsets)
 {
	$_ -= $first;
	++$onum;
	$offsets .= "$onum $_\n";
 }
 my $offset_adjust = length($offsets);
 $first += length($offsets);
 $stream_length += length($offsets);
 my $dict_data = "";
 $dict_data .= " /Length $stream_length\n";
 $dict_data .= " /N $n\n";
 $dict_data .= " /First $first\n";
 if ($ostream_extends)
 {
	$dict_data .= " /Extends $ostream_extends\n";
 }
 $dict_data .= ">>\n";
 $offset_adjust += length($dict_data);
 print $dict_data;
 print "stream\n";
 print $offsets;
 foreach (@ostream)
 {
	print $_;
 }

 for (@ostream_discarded)
 {
	$offset -= length($_);
 }
 $offset += $offset_adjust;

 $ostream_idx = 0;
 $ostream_id = 0;
 @ostream = ();
 @ostream_offsets = ();
 @ostream_discarded = ();
 $ostream_extends = "";
}

@unixroot/usr/bin/qpdf.dbg

@unixroot/usr/bin/qpdf.exe

@unixroot/usr/bin/zlib-flate.dbg

@unixroot/usr/bin/zlib-flate.exe

@unixroot/usr/include/qpdf/Buffer.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __BUFFER_HH__
#define __BUFFER_HH__

#include <qpdf/DLL.h>
#include <cstring> // for size_t

class Buffer
{
 public:
 QPDF_DLL
 Buffer();

 // Create a Buffer object whose memory is owned by the class and
 // will be freed when the Buffer object is destroyed.
 QPDF_DLL
 Buffer(size_t size);

 // Create a Buffer object whose memory is owned by the caller and
 // will not be freed when the Buffer is destroyed.
 QPDF_DLL
 Buffer(unsigned char* buf, size_t size);

 QPDF_DLL
 Buffer(Buffer const&);
 QPDF_DLL
 Buffer& operator=(Buffer const&);
 QPDF_DLL
 ~Buffer();
 QPDF_DLL
 size_t getSize() const;
 QPDF_DLL
 unsigned char const* getBuffer() const;
 QPDF_DLL
 unsigned char* getBuffer();

 private:
 void init(size_t size, unsigned char* buf, bool own_memory);
 void copy(Buffer const&);
 void destroy();

 bool own_memory;
 size_t size;
 unsigned char* buf;
};

#endif // __BUFFER_HH__

@unixroot/usr/include/qpdf/BufferInputSource.hh
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDF_BUFFERINPUTSOURCE_HH__
#define __QPDF_BUFFERINPUTSOURCE_HH__

#include <qpdf/InputSource.hh>
#include <qpdf/Buffer.hh>

class BufferInputSource: public InputSource
{
 public:
 BufferInputSource(std::string const& description, Buffer* buf,
 bool own_memory = false);
 BufferInputSource(std::string const& description,
 std::string const& contents);
 virtual ~BufferInputSource();
 virtual qpdf_offset_t findAndSkipNextEOL();
 virtual std::string const& getName() const;
 virtual qpdf_offset_t tell();
 virtual void seek(qpdf_offset_t offset, int whence);
 virtual void rewind();
 virtual size_t read(char* buffer, size_t length);
 virtual void unreadCh(char ch);

 private:
 bool own_memory;
 std::string description;
 Buffer* buf;
 qpdf_offset_t cur_offset;
};

#endif // __QPDF_BUFFERINPUTSOURCE_HH__

@unixroot/usr/include/qpdf/Constants.h
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDFCONSTANTS_H__
#define __QPDFCONSTANTS_H__

/* Keep this file 'C' compatible so it can be used from the C and C++
 * interfaces.
 */

/* Error Codes */

enum qpdf_error_code_e
{
 qpdf_e_success = 0,
 qpdf_e_internal,	 	/* logic/programming error -- indicates bug */
 qpdf_e_system,		/* I/O error, memory error, etc. */
 qpdf_e_unsupported,		/* PDF feature not (yet) supported by qpdf */
 qpdf_e_password,		/* incorrect password for encrypted file */
 qpdf_e_damaged_pdf,		/* syntax errors or other damage in PDF */
 qpdf_e_pages, /* erroneous or unsupported pages structure */
};

/* Write Parameters */

enum qpdf_object_stream_e
{
 qpdf_o_disable = 0,		/* disable object streams */
 qpdf_o_preserve,		/* preserve object streams */
 qpdf_o_generate		/* generate object streams */
};
enum qpdf_stream_data_e
{
 qpdf_s_uncompress = 0,	/* uncompress stream data */
 qpdf_s_preserve,		/* preserve stream data compression */
 qpdf_s_compress		/* compress stream data */
};

/* R3 Encryption Parameters */

enum qpdf_r3_print_e
{
 qpdf_r3p_full = 0,		/* allow all printing */
 qpdf_r3p_low,		/* allow only low-resolution printing */
 qpdf_r3p_none		/* allow no printing */
};
enum qpdf_r3_modify_e		/* Allowed changes: */
{
 qpdf_r3m_all = 0,		/* General editing, comments, forms */
 qpdf_r3m_annotate,	 /* Comments, form field fill-in, and signing */
 qpdf_r3m_form,		/* form field fill-in and signing */
 qpdf_r3m_assembly,		/* only document assembly */
 qpdf_r3m_none		/* no modifications */
};

#endif /* __QPDFCONSTANTS_H__ */

@unixroot/usr/include/qpdf/DLL.h
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDF_DLL_HH__
#define __QPDF_DLL_HH__

#if defined(_WIN32) && defined(DLL_EXPORT)
define QPDF_DLL __declspec(dllexport)
#else
define QPDF_DLL
#endif

#endif /* __QPDF_DLL_HH__ */

@unixroot/usr/include/qpdf/FileInputSource.hh
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDF_FILEINPUTSOURCE_HH__
#define __QPDF_FILEINPUTSOURCE_HH__

#include <qpdf/InputSource.hh>

class FileInputSource: public InputSource
{
 public:
 FileInputSource();
 void setFilename(char const* filename);
 void setFile(char const* description, FILE* filep, bool close_file);
 virtual ~FileInputSource();
 virtual qpdf_offset_t findAndSkipNextEOL();
 virtual std::string const& getName() const;
 virtual qpdf_offset_t tell();
 virtual void seek(qpdf_offset_t offset, int whence);
 virtual void rewind();
 virtual size_t read(char* buffer, size_t length);
 virtual void unreadCh(char ch);

 private:
 FileInputSource(FileInputSource const&);
 FileInputSource& operator=(FileInputSource const&);

 void destroy();

 bool close_file;
 std::string filename;
 FILE* file;
};

#endif // __QPDF_FILEINPUTSOURCE_HH__

@unixroot/usr/include/qpdf/InputSource.hh
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDF_INPUTSOURCE_HH__
#define __QPDF_INPUTSOURCE_HH__

#include <qpdf/Types.h>
#include <stdio.h>
#include <string>

class InputSource
{
 public:
 InputSource() :
 last_offset(0)
 {
 }
 virtual ~InputSource()
 {
 }

 void setLastOffset(qpdf_offset_t);
 qpdf_offset_t getLastOffset() const;
 std::string readLine(size_t max_line_length);

 virtual qpdf_offset_t findAndSkipNextEOL() = 0;
 virtual std::string const& getName() const = 0;
 virtual qpdf_offset_t tell() = 0;
 virtual void seek(qpdf_offset_t offset, int whence) = 0;
 virtual void rewind() = 0;
 virtual size_t read(char* buffer, size_t length) = 0;
 virtual void unreadCh(char ch) = 0;

 protected:
 qpdf_offset_t last_offset;
};

#endif // __QPDF_INPUTSOURCE_HH__

@unixroot/usr/include/qpdf/Pipeline.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

// Generalized Pipeline interface. By convention, subclasses of
// Pipeline are called Pl_Something.
//
// When an instance of Pipeline is created with a pointer to a next
// pipeline, that pipeline writes its data to the next one when it
// finishes with it. In order to make possible a usage style in which
// a pipeline may be passed to a function which may stick other
// pipelines in front of it, the allocator of a pipeline is
// responsible for its destruction. In other words, one pipeline
// object does not attempt to manage the memory of its successor.
//
// The client is required to call finish() before destroying a
// Pipeline in order to avoid loss of data. A Pipeline class should
// not throw an exception in the destructor if this hasn't been done
// though since doing so causes too much trouble when deleting
// pipelines during error conditions.
//
// Some pipelines are reusable (i.e., you can call write() after
// calling finish() and can call finish() multiple times) while others
// are not. It is up to the caller to use a pipeline according to its
// own restrictions.

#ifndef __PIPELINE_HH__
#define __PIPELINE_HH__

#include <qpdf/DLL.h>
#include <string>

class Pipeline
{
 public:
 QPDF_DLL
 Pipeline(char const* identifier, Pipeline* next);

 QPDF_DLL
 virtual ~Pipeline();

 // Subclasses should implement write and finish to do their jobs
 // and then, if they are not end-of-line pipelines, call
 // getNext()->write or getNext()->finish. It would be really nice
 // if write could take unsigned char const*, but this would make
 // it much more difficult to write pipelines around legacy
 // interfaces whose calls don't want pointers to const data. As a
 // rule, pipelines should generally not be modifying the data
 // passed to them. They should, instead, create new data to pass
 // downstream.
 QPDF_DLL
 virtual void write(unsigned char* data, size_t len) = 0;
 QPDF_DLL
 virtual void finish() = 0;

 protected:
 Pipeline* getNext(bool allow_null = false);
 std::string identifier;

 private:
 // Do not implement copy or assign
 Pipeline(Pipeline const&);
 Pipeline& operator=(Pipeline const&);

 Pipeline* next;
};

#endif // __PIPELINE_HH__

@unixroot/usr/include/qpdf/Pl_Buffer.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __PL_BUFFER_HH__
#define __PL_BUFFER_HH__

// This pipeline accumulates the data passed to it into a memory
// buffer. Each subsequent use of this buffer appends to the data
// accumulated so far. getBuffer() may be called only after calling
// finish() and before calling any subsequent write(). At that point,
// a dynamically allocated Buffer object is returned and the internal
// buffer is reset. The caller is responsible for deleting the
// returned Buffer.
//
// For this pipeline, "next" may be null. If a next pointer is
// provided, this pipeline will also pass the data through to it.

#include <qpdf/Pipeline.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Buffer.hh>
#include <list>

class Pl_Buffer: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Buffer(char const* identifier, Pipeline* next = 0);
 QPDF_DLL
 virtual ~Pl_Buffer();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();

 // Each call to getBuffer() resets this object -- see notes above.
 // The caller is responsible for deleting the returned Buffer
 // object.
 QPDF_DLL
 Buffer* getBuffer();

 private:
 bool ready;
 std::list<PointerHolder<Buffer> > data;
 size_t total_size;
};

#endif // __PL_BUFFER_HH__

@unixroot/usr/include/qpdf/Pl_Concatenate.hh
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __PL_CONCATENATE_HH__
#define __PL_CONCATENATE_HH__

// This pipeline will drop all regular finished calls rather than
// passing them onto next. To finish downstream streams, call
// manualFinish. This makes it possible to pipe multiple streams
// (e.g. with QPDFObjectHandle::pipeStreamData) to a downstream like
// Pl_Flate that can't handle multiple calls to finish().

#include <qpdf/Pipeline.hh>

class Pl_Concatenate: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Concatenate(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_Concatenate();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);

 QPDF_DLL
 virtual void finish();

 // At the very end, call manualFinish to actually finish the rest of
 // the pipeline.
 QPDF_DLL
 void manualFinish();
};

#endif // __PL_CONCATENATE_HH__

@unixroot/usr/include/qpdf/Pl_Count.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __PL_COUNT_HH__
#define __PL_COUNT_HH__

// This pipeline is reusable; i.e., it is safe to call write() after
// calling finish().

#include <qpdf/Types.h>
#include <qpdf/Pipeline.hh>

class Pl_Count: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Count(char const* identifier, Pipeline* next);
 QPDF_DLL
 virtual ~Pl_Count();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();
 // Returns the number of bytes written
 QPDF_DLL
 qpdf_offset_t getCount() const;
 // Returns the last character written, or '\0' if no characters
 // have been written (in which case getCount() returns 0)
 QPDF_DLL
 unsigned char getLastChar() const;

 private:
 qpdf_offset_t count;
 unsigned char last_char;
};

#endif // __PL_COUNT_HH__

@unixroot/usr/include/qpdf/Pl_Discard.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __PL_DISCARD_HH__
#define __PL_DISCARD_HH__

// This pipeline discards its output. It is an end-of-line pipeline
// (with no next).

// This pipeline is reusable; i.e., it is safe to call write() after
// calling finish().

#include <qpdf/Pipeline.hh>

class Pl_Discard: public Pipeline
{
 public:
 QPDF_DLL
 Pl_Discard();
 QPDF_DLL
 virtual ~Pl_Discard();
 QPDF_DLL
 virtual void write(unsigned char*, size_t);
 QPDF_DLL
 virtual void finish();
};

#endif // __PL_DISCARD_HH__

@unixroot/usr/include/qpdf/Pl_Flate.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __PL_FLATE_HH__
#define __PL_FLATE_HH__

#include <qpdf/Pipeline.hh>

class Pl_Flate: public Pipeline
{
 public:
 static int const def_bufsize = 65536;

 enum action_e { a_inflate, a_deflate };

 QPDF_DLL
 Pl_Flate(char const* identifier, Pipeline* next,
	 action_e action, int out_bufsize = def_bufsize);
 QPDF_DLL
 virtual ~Pl_Flate();

 QPDF_DLL
 virtual void write(unsigned char* data, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 void handleData(unsigned char* data, int len, int flush);
 void checkError(char const* prefix, int error_code);

 unsigned char* outbuf;
 int out_bufsize;
 action_e action;
 bool initialized;
 void* zdata;
};

#endif // __PL_FLATE_HH__

@unixroot/usr/include/qpdf/Pl_StdioFile.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

// End-of-line pipeline that simply writes its data to a stdio FILE* object.

#ifndef __PL_STDIOFILE_HH__
#define __PL_STDIOFILE_HH__

#include <qpdf/Pipeline.hh>

#include <stdio.h>

//
// This pipeline is reusable.
//

class Pl_StdioFile: public Pipeline
{
 public:
 // f is externally maintained; this class just writes to and
 // flushes it. It does not close it.
 QPDF_DLL
 Pl_StdioFile(char const* identifier, FILE* f);
 QPDF_DLL
 virtual ~Pl_StdioFile();

 QPDF_DLL
 virtual void write(unsigned char* buf, size_t len);
 QPDF_DLL
 virtual void finish();

 private:
 FILE* file;
};

#endif // __PL_STDIOFILE_HH__

@unixroot/usr/include/qpdf/PointerHolder.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __POINTERHOLDER_HH__
#define __POINTERHOLDER_HH__

// This class is basically boost::shared_pointer but predates that by
// several years.

// This class expects to be initialized with a dynamically allocated
// object pointer. It keeps a reference count and deletes this once
// the reference count goes to zero. PointerHolder objects are
// explicitly safe for use in STL containers.

// It is very important that a client who pulls the pointer out of
// this holder does not let the holder go out of scope until it is
// finished with the pointer. It is also important that exactly one
// instance of this object ever gets initialized with a given pointer.
// Otherwise, the pointer will be deleted twice, and before that, some
// objects will be left with a pointer to a deleted object. In other
// words, the only legitimate way for two PointerHolder objects to
// contain the same pointer is for one to be a copy of the other.
// Copy and assignment semantics are well-defined and essentially
// allow you to use PointerHolder as a means to get pass-by-reference
// semantics in a pass-by-value environment without having to worry
// about memory management details.

// Comparison (== and <) are defined and operate on the internally
// stored pointers, not on the data. This makes it possible to store
// PointerHolder objects in sorted lists or to find them in STL
// containers just as one would be able to store pointers. Comparing
// the underlying pointers provides a well-defined, if not
// particularly meaningful, ordering.

template <class T>
class PointerHolder
{
 private:
 class Data
 {
 public:
	Data(T* pointer, bool array) :
	 pointer(pointer),
	 array(array),
	 refcount(0)
	 {
	 }
	~Data()
	 {
		if (array)
		{
		 delete [] this->pointer;
		}
		else
		{
		 delete this->pointer;
		}
	 }
	T* pointer;
	bool array;
	int refcount;
 private:
	Data(Data const&);
	Data& operator=(Data const&);
 };

 public:
 // "tracing" is not used but is kept for interface backward compatbility
 PointerHolder(T* pointer = 0, bool tracing = false)
	{
	 this->init(new Data(pointer, false));
	}
 // Special constructor indicating to free memory with delete []
 // instead of delete
 PointerHolder(bool, T* pointer)
	{
	 this->init(new Data(pointer, true));
	}
 PointerHolder(PointerHolder const& rhs)
	{
	 this->copy(rhs);
	}
 PointerHolder& operator=(PointerHolder const& rhs)
	{
	 if (this != &rhs)
	 {
		this->destroy();
		this->copy(rhs);
	 }
	 return *this;
	}
 ~PointerHolder()
	{
	 this->destroy();
	}
 bool operator==(PointerHolder const& rhs) const
 {
	return this->data->pointer == rhs.data->pointer;
 }
 bool operator<(PointerHolder const& rhs) const
 {
	return this->data->pointer < rhs.data->pointer;
 }

 // NOTE: The pointer returned by getPointer turns into a pumpkin
 // when the last PointerHolder that contains it disappears.
 T* getPointer()
	{
	 return this->data->pointer;
	}
 T const* getPointer() const
	{
	 return this->data->pointer;
	}
 int getRefcount() const
	{
	 return this->data->refcount;
	}

 T const& operator*() const
 {
 return *this->data->pointer;
 }
 T& operator*()
 {
 return *this->data->pointer;
 }

 T const* operator->() const
 {
 return this->data->pointer;
 }
 T* operator->()
 {
 return this->data->pointer;
 }

 private:
 void init(Data* data)
	{
	 this->data = data;
	 {
		++this->data->refcount;
	 }
	}
 void copy(PointerHolder const& rhs)
	{
	 this->init(rhs.data);
	}
 void destroy()
	{
	 bool gone = false;
	 {
		if (--this->data->refcount == 0)
		{
		 gone = true;
		}
	 }
	 if (gone)
	 {
		delete this->data;
	 }
	}

 Data* data;
};

#endif // __POINTERHOLDER_HH__

@unixroot/usr/include/qpdf/qpdf-c.h
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDF_C_H__
#define __QPDF_C_H__

/*
 * This file defines a basic "C" API for qpdf. It provides access to
 * a subset of the QPDF library's capabilities to make them accessible
 * to callers who can't handle calling C++ functions or working with
 * C++ classes. This may be especially useful to Windows users who
 * are accessing the qpdf DLL directly or to other people programming
 * in non-C/C++ languages that can call C code but not C++ code.
 *
 * There are several things to keep in mind when using the C API.
 *
 * The C API is not as rich as the C++ API. For any operations
 * that involve actually manipulating PDF objects, you must use
 * the C++ API. The C API is primarily useful for doing basic
 * transformations on PDF files similar to what you might do with
 * the qpdf command-line tool.
 *
 * These functions store their state in a qpdf_data object.
 * Individual instances of qpdf_data are not thread-safe: although
 * you may access different qpdf_data objects from different
 * threads, you may not access one qpdf_data simultaneously from
 * multiple threads.
 *
 * All dynamic memory, except for that of the qpdf_data object
 * itself, is managed by the library. You must create a qpdf_data
 * object using qpdf_init and free it using qpdf_cleanup.
 *
 * Many functions return char*. In all cases, the char* values
 * returned are pointers to data inside the qpdf_data object. As
 * such, they are always freed by qpdf_cleanup. In most cases,
 * strings returned by functions here may be invalidated by
 * subsequent function calls, sometimes even to different
 * functions. If you want a string to last past the next qpdf
 * call or after a call to qpdf_cleanup, you should make a copy of
 * it.
 *
 * Many functions defined here merely set parameters and therefore
 * never return error conditions. Functions that may cause PDF
 * files to be read or written may return error conditions. Such
 * functions return an error code. If there were no errors or
 * warnings, they return QPDF_SUCCESS. If there were warnings,
 * the return value has the QPDF_WARNINGS bit set. If there
 * errors, the QPDF_ERRORS bit is set. In other words, if there
 * are both warnings and errors, then the return status will be
 * QPDF_WARNINGS | QPDF_ERRORS. You may also call the
 * qpdf_more_warnings and qpdf_more_errors functions to test
 * whether there are unseen warning or error conditions. By
 * default, warnings are written to stderr when detected, but this
 * behavior can be suppressed. In all cases, errors and warnings
 * may be retrieved by calling qpdf_next_warning and
 * qpdf_next_error. All exceptions thrown by the C++ interface
 * are caught and converted into error messages by the C
 * interface.
 *
 * Most functions defined here have obvious counterparts that are
 * methods to either QPDF or QPDFWriter. Please see comments in
 * QPDF.hh and QPDFWriter.hh for details on their use. In order
 * to avoid duplication of information, comments here focus
 * primarily on differences between the C and C++ API.
 */

#include <qpdf/DLL.h>
#include <qpdf/Types.h>
#include <qpdf/Constants.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {
#endif

 typedef struct _qpdf_data* qpdf_data;
 typedef struct _qpdf_error* qpdf_error;

 /* Many functions return an integer error code. Codes are defined
 * below. See comments at the top of the file for details. Note
 * that the values below can be logically orred together.
 */
 typedef int QPDF_ERROR_CODE;
define QPDF_SUCCESS 0
define QPDF_WARNINGS 1 << 0
define QPDF_ERRORS 1 << 1

 typedef int QPDF_BOOL;
define QPDF_TRUE 1
define QPDF_FALSE 0

 /* Returns the version of the qpdf software */
 QPDF_DLL
 char const* qpdf_get_qpdf_version();

 /* Returns dynamically allocated qpdf_data pointer; must be freed
 * by calling qpdf_cleanup.
 */
 QPDF_DLL
 qpdf_data qpdf_init();

 /* Pass a pointer to the qpdf_data pointer created by qpdf_init to
 * clean up resources.
 */
 QPDF_DLL
 void qpdf_cleanup(qpdf_data* qpdf);

 /* ERROR REPORTING */

 /* Returns 1 if there is an error condition. The error condition
 * can be retrieved by a single call to qpdf_get_error.
 */
 QPDF_DLL
 QPDF_BOOL qpdf_has_error(qpdf_data qpdf);

 /* Returns the error condition, if any. The return value is a
 * pointer to data that will become invalid after the next call to
 * this function, qpdf_next_warning, or qpdf_destroy. After this
 * function is called, qpdf_has_error will return QPDF_FALSE until
 * the next error condition occurs. If there is no error
 * condition, this function returns a null pointer.
 */
 QPDF_DLL
 qpdf_error qpdf_get_error(qpdf_data qpdf);

 /* Returns 1 if there are any unretrieved warnings, and zero
 * otherwise.
 */
 QPDF_DLL
 QPDF_BOOL qpdf_more_warnings(qpdf_data qpdf);

 /* If there are any warnings, returns a pointer to the next
 * warning. Otherwise returns a null pointer.
 */
 QPDF_DLL
 qpdf_error qpdf_next_warning(qpdf_data qpdf);

 /* Extract fields of the error. */

 /* Use this function to get a full error message suitable for
 * showing to the user. */
 QPDF_DLL
 char const* qpdf_get_error_full_text(qpdf_data q, qpdf_error e);

 /* Use these functions to extract individual fields from the
 * error; see QPDFExc.hh for details. */
 QPDF_DLL
 enum qpdf_error_code_e qpdf_get_error_code(qpdf_data q, qpdf_error e);
 QPDF_DLL
 char const* qpdf_get_error_filename(qpdf_data q, qpdf_error e);
 QPDF_DLL
 unsigned long long qpdf_get_error_file_position(qpdf_data q, qpdf_error e);
 QPDF_DLL
 char const* qpdf_get_error_message_detail(qpdf_data q, qpdf_error e);

 /* By default, warnings are written to stderr. Passing true to
 * this function will prevent warnings from being written to
 * stderr. They will still be available by calls to
 * qpdf_next_warning.
 */
 QPDF_DLL
 void qpdf_set_suppress_warnings(qpdf_data qpdf, QPDF_BOOL value);

 /* READ FUNCTIONS */

 /* READ PARAMETER FUNCTIONS -- must be called before qpdf_read */

 QPDF_DLL
 void qpdf_set_ignore_xref_streams(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_attempt_recovery(qpdf_data qpdf, QPDF_BOOL value);

 /* Calling qpdf_read causes processFile to be called in the C++
 * API. Basic parsing is performed, but data from the file is
 * only read as needed. For files without passwords, pass a null
 * pointer as the password.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_read(qpdf_data qpdf, char const* filename,
			 char const* password);

 /* Calling qpdf_read_memory causes processMemoryFile to be called
 * in the C++ API. Otherwise, it behaves in the same way as
 * qpdf_read. The description argument will be used in place of
 * the file name in any error or warning messages generated by the
 * library.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_read_memory(qpdf_data qpdf,
				 char const* description,
				 char const* buffer,
				 unsigned long long size,
				 char const* password);

 /* Read functions below must be called after qpdf_read or
 * qpdf_read_memory. */

 /*
 * NOTE: Functions that return char* are returning a pointer to an
 * internal buffer that will be reused for each call to a function
 * that returns a char*. You must use or copy the value before
 * calling any other qpdf library functions.
 */

 /* Return the version of the PDF file. See warning above about
 * functions that return char*. */
 QPDF_DLL
 char const* qpdf_get_pdf_version(qpdf_data qpdf);

 /* Return the extension level of the PDF file. */
 QPDF_DLL
 int qpdf_get_pdf_extension_level(qpdf_data qpdf);

 /* Return the user password. If the file is opened using the
 * owner password, the user password may be retrieved using this
 * function. If the file is opened using the user password, this
 * function will return that user password. See warning above
 * about functions that return char*.
 */
 QPDF_DLL
 char const* qpdf_get_user_password(qpdf_data qpdf);

 /* Return the string value of a key in the document's Info
 * dictionary. The key parameter should include the leading
 * slash, e.g. "/Author". If the key is not present or has a
 * non-string value, a null pointer is returned. Otherwise, a
 * pointer to an internal buffer is returned. See warning above
 * about functions that return char*.
 */
 QPDF_DLL
 char const* qpdf_get_info_key(qpdf_data qpdf, char const* key);

 /* Set a value in the info dictionary, possibly replacing an
 * existing value. The key must include the leading slash
 * (e.g. "/Author"). Passing a null pointer as a value will
 * remove the key from the info dictionary. Otherwise, a copy
 * will be made of the string that is passed in.
 */
 QPDF_DLL
 void qpdf_set_info_key(qpdf_data qpdf, char const* key, char const* value);

 /* Indicate whether the input file is linearized. */
 QPDF_DLL
 QPDF_BOOL qpdf_is_linearized(qpdf_data qpdf);

 /* Indicate whether the input file is encrypted. */
 QPDF_DLL
 QPDF_BOOL qpdf_is_encrypted(qpdf_data qpdf);

 QPDF_DLL
 QPDF_BOOL qpdf_allow_accessibility(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_extract_all(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_print_low_res(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_print_high_res(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_assembly(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_form(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_annotation(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_other(qpdf_data qpdf);
 QPDF_DLL
 QPDF_BOOL qpdf_allow_modify_all(qpdf_data qpdf);

 /* WRITE FUNCTIONS */

 /* Set up for writing. No writing is actually performed until the
 * call to qpdf_write().
 */

 /* Supply the name of the file to be written and initialize the
 * qpdf_data object to handle writing operations. This function
 * also attempts to create the file. The PDF data is not written
 * until the call to qpdf_write. qpdf_init_write may be called
 * multiple times for the same qpdf_data object. When
 * qpdf_init_write is called, all information from previous calls
 * to functions that set write parameters (qpdf_set_linearization,
 * etc.) is lost, so any write parameter functions must be called
 * again.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_init_write(qpdf_data qpdf, char const* filename);

 /* Initialize for writing but indicate that the PDF file should be
 * written to memory. Call qpdf_get_buffer_length and
 * qpdf_get_buffer to retrieve the resulting buffer. The memory
 * containing the PDF file will be destroyed when qpdf_cleanup is
 * called.
 */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_init_write_memory(qpdf_data qpdf);

 /* Retrieve the buffer used if the file was written to memory.
 * qpdf_get_buffer returns a null pointer if data was not written
 * to memory. The memory is freed when qpdf_cleanup is called or
 * if a subsequent call to qpdf_init_write or
 * qpdf_init_write_memory is called. */
 QPDF_DLL
 size_t qpdf_get_buffer_length(qpdf_data qpdf);
 QPDF_DLL
 unsigned char const* qpdf_get_buffer(qpdf_data qpdf);

 QPDF_DLL
 void qpdf_set_object_stream_mode(qpdf_data qpdf,
				 enum qpdf_object_stream_e mode);

 QPDF_DLL
 void qpdf_set_stream_data_mode(qpdf_data qpdf,
				 enum qpdf_stream_data_e mode);

 QPDF_DLL
 void qpdf_set_content_normalization(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_qdf_mode(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_deterministic_ID(qpdf_data qpdf, QPDF_BOOL value);

 /* Never use qpdf_set_static_ID except in test suites to suppress
 * generation of a random /ID. See also qpdf_set_deterministic_ID.
 */
 QPDF_DLL
 void qpdf_set_static_ID(qpdf_data qpdf, QPDF_BOOL value);

 /* Never use qpdf_set_static_aes_IV except in test suites to
 * create predictable AES encrypted output.
 */
 QPDF_DLL
 void qpdf_set_static_aes_IV(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_suppress_original_object_IDs(
	qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_preserve_encryption(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_r2_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_print, QPDF_BOOL allow_modify,
	QPDF_BOOL allow_extract, QPDF_BOOL allow_annotate);

 QPDF_DLL
 void qpdf_set_r3_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify);

 QPDF_DLL
 void qpdf_set_r4_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify,
	QPDF_BOOL encrypt_metadata, QPDF_BOOL use_aes);

 QPDF_DLL
 void qpdf_set_r5_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify,
	QPDF_BOOL encrypt_metadata);

 QPDF_DLL
 void qpdf_set_r6_encryption_parameters(
	qpdf_data qpdf, char const* user_password, char const* owner_password,
	QPDF_BOOL allow_accessibility, QPDF_BOOL allow_extract,
	enum qpdf_r3_print_e print, enum qpdf_r3_modify_e modify,
	QPDF_BOOL encrypt_metadata);

 QPDF_DLL
 void qpdf_set_linearization(qpdf_data qpdf, QPDF_BOOL value);

 QPDF_DLL
 void qpdf_set_minimum_pdf_version(qpdf_data qpdf, char const* version);

 QPDF_DLL
 void qpdf_set_minimum_pdf_version_and_extension(
 qpdf_data qpdf, char const* version, int extension_level);

 QPDF_DLL
 void qpdf_force_pdf_version(qpdf_data qpdf, char const* version);

 QPDF_DLL
 void qpdf_force_pdf_version_and_extension(
 qpdf_data qpdf, char const* version, int extension_level);

 /* Do actual write operation. */
 QPDF_DLL
 QPDF_ERROR_CODE qpdf_write(qpdf_data qpdf);

#ifdef __cplusplus
}
#endif

#endif /* __QPDF_C_H__ */

@unixroot/usr/include/qpdf/QPDF.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDF_HH__
#define __QPDF_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <stdio.h>
#include <string>
#include <map>
#include <list>
#include <iostream>

#include <qpdf/QPDFObjGen.hh>
#include <qpdf/QPDFXRefEntry.hh>
#include <qpdf/QPDFObjectHandle.hh>
#include <qpdf/QPDFTokenizer.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/InputSource.hh>

class QPDF_Stream;
class BitStream;
class BitWriter;
class QPDFExc;

class QPDF
{
 public:
 // Get the current version of the QPDF software
 QPDF_DLL
 static std::string const& QPDFVersion();

 QPDF_DLL
 QPDF();
 QPDF_DLL
 ~QPDF();

 // Associate a file with a QPDF object and do initial parsing of
 // the file. PDF objects are not read until they are needed. A
 // QPDF object may be associated with only one file in its
 // lifetime. This method must be called before any methods that
 // potentially ask for information about the PDF file are called.
 // Prior to calling this, the only methods that are allowed are
 // those that set parameters. If the input file is not
 // encrypted,either a null password or an empty password can be
 // used. If the file is encrypted, either the user password or
 // the owner password may be supplied.
 QPDF_DLL
 void processFile(char const* filename, char const* password = 0);

 // Parse a PDF from a stdio FILE*. The FILE must be open in
 // binary mode and must be seekable. It may be open read only.
 // This works exactly like processFile except that the PDF file is
 // read from an already opened FILE*. If close_file is true, the
 // file will be closed at the end. Otherwise, the caller is
 // responsible for closing the file.
 QPDF_DLL
 void processFile(char const* description, FILE* file,
 bool close_file, char const* password = 0);

 // Parse a PDF file loaded into a memory buffer. This works
 // exactly like processFile except that the PDF file is in memory
 // instead of on disk. The description appears in any warning or
 // error message in place of the file name.
 QPDF_DLL
 void processMemoryFile(char const* description,
			 char const* buf, size_t length,
			 char const* password = 0);

 // Parse a PDF file loaded from a custom InputSource. If you have
 // your own method of retrieving a PDF file, you can subclass
 // InputSource and use this method.
 QPDF_DLL
 void processInputSource(PointerHolder<InputSource>,
 char const* password = 0);

 // Create a QPDF object for an empty PDF. This PDF has no pages
 // or objects other than a minimal trailer, a document catalog,
 // and a /Pages tree containing zero pages. Pages and other
 // objects can be added to the file in the normal way, and the
 // trailer and document catalog can be mutated. Calling this
 // method is equivalent to calling processFile on an equivalent
 // PDF file. See the pdf-create.cc example for a demonstration of
 // how to use this method to create a PDF file from scratch.
 QPDF_DLL
 void emptyPDF();

 // Parameter settings

 // By default, warning messages are issued to std::cerr and output
 // messages printed by certain check calls are issued to
 // std::cout. This method allows you to specify alternative
 // streams for this purpose. Note that no normal QPDF operations
 // generate output to std::cout, so for applications that just
 // wish to avoid creating output and don't call any check
 // functions, calling setSuppressWarnings(true) is sufficient.
 // Applications that wish to present check or warning information
 // to users may replace the output and error streams to capture
 // the output and errors for other use. A null value for either
 // stream will cause QPDF to use std::cout or std::cerr as
 // appropriate.
 QPDF_DLL
 void setOutputStreams(std::ostream* out_stream, std::ostream* err_stream);

 // If true, ignore any cross-reference streams in a hybrid file
 // (one that contains both cross-reference streams and
 // cross-reference tables). This can be useful for testing to
 // ensure that a hybrid file would work with an older reader.
 QPDF_DLL
 void setIgnoreXRefStreams(bool);

 // By default, any warnings are issued to std::cerr or the error
 // stream specified in a call to setOutputStreams as they are
 // encountered. If this is called with a true value, reporting of
 // warnings is suppressed. You may still retrieve warnings by
 // calling getWarnings.
 QPDF_DLL
 void setSuppressWarnings(bool);

 // By default, QPDF will try to recover if it finds certain types
 // of errors in PDF files. If turned off, it will throw an
 // exception on the first such problem it finds without attempting
 // recovery.
 QPDF_DLL
 void setAttemptRecovery(bool);

 // Other public methods

 // Return the list of warnings that have been issued so far and
 // clear the list. This method may be called even if processFile
 // throws an exception. Note that if setSuppressWarnings was not
 // called or was called with a false value, any warnings retrieved
 // here will have already been output.
 QPDF_DLL
 std::vector<QPDFExc> getWarnings();

 QPDF_DLL
 std::string getFilename() const;
 QPDF_DLL
 std::string getPDFVersion() const;
 QPDF_DLL
 int getExtensionLevel();
 QPDF_DLL
 QPDFObjectHandle getTrailer();
 QPDF_DLL
 QPDFObjectHandle getRoot();

 // Install this object handle as an indirect object and return an
 // indirect reference to it.
 QPDF_DLL
 QPDFObjectHandle makeIndirectObject(QPDFObjectHandle);

 // Retrieve an object by object ID and generation. Returns an
 // indirect reference to it.
 QPDF_DLL
 QPDFObjectHandle getObjectByObjGen(QPDFObjGen const&);
 QPDF_DLL
 QPDFObjectHandle getObjectByID(int objid, int generation);

 // Replace the object with the given object id with the given
 // object. The object handle passed in must be a direct object,
 // though it may contain references to other indirect objects
 // within it. Calling this method can have somewhat confusing
 // results. Any existing QPDFObjectHandle instances that point to
 // the old object and that have been resolved (which happens
 // automatically if you access them in any way) will continue to
 // point to the old object even though that object will no longer
 // be associated with the PDF file. Note that replacing an object
 // with QPDFObjectHandle::newNull() effectively removes the object
 // from the file since a non-existent object is treated as a null
 // object. To replace a reserved object, call replaceReserved
 // instead.
 QPDF_DLL
 void replaceObject(QPDFObjGen const& og, QPDFObjectHandle);
 QPDF_DLL
 void replaceObject(int objid, int generation, QPDFObjectHandle);

 // Swap two objects given by ID. Calling this method can have
 // confusing results. After swapping two objects, existing
 // QPDFObjectHandle instances that reference them will still
 // reference the same underlying objects, at which point those
 // existing QPDFObjectHandle instances will have incorrect
 // information about the object and generation number of those
 // objects. While this does not necessarily cause a problem, it
 // can certainly be confusing. It is therefore recommended that
 // you replace any existing QPDFObjectHandle instances that point
 // to the swapped objects with new ones, possibly by calling
 // getObjectByID.
 QPDF_DLL
 void swapObjects(QPDFObjGen const& og1, QPDFObjGen const& og2);
 QPDF_DLL
 void swapObjects(int objid1, int generation1,
		 int objid2, int generation2);

 // Replace a reserved object. This is a wrapper around
 // replaceObject but it guarantees that the underlying object is a
 // reserved object. After this call, reserved will be a reference
 // to replacement.
 QPDF_DLL
 void
 replaceReserved(QPDFObjectHandle reserved,
 QPDFObjectHandle replacement);

 // Copy an object from another QPDF to this one. The return value
 // is an indirect reference to the copied object in this file.
 // This method is intended to be used to copy non-page objects and
 // will not copy page objects. To copy page objects, pass the
 // foreign page object directly to addPage (or addPageAt). If you
 // copy objects that contain references to pages, you should copy
 // the pages first using addPage(At). Otherwise references to the
 // pages that have not been copied will be replaced with nulls.

 // When copying objects with this method, object structure will be
 // preserved, so all indirectly referenced indirect objects will
 // be copied as well. This includes any circular references that
 // may exist. The QPDF object keeps a record of what has already
 // been copied, so shared objects will not be copied multiple
 // times. This also means that if you mutate an object that has
 // already been copied and try to copy it again, it won't work
 // since the modified object will not be recopied. Therefore, you
 // should do all mutation on the original file that you are going
 // to do before you start copying its objects to a new file.
 QPDF_DLL
 QPDFObjectHandle copyForeignObject(QPDFObjectHandle foreign);

 // Encryption support

 enum encryption_method_e { e_none, e_unknown, e_rc4, e_aes, e_aesv3 };
 class EncryptionData
 {
 public:

	// This class holds data read from the encryption dictionary.
	EncryptionData(int V, int R, int Length_bytes, int P,
		 std::string const& O, std::string const& U,
 std::string const& OE, std::string const& UE,
 std::string const& Perms,
		 std::string const& id1, bool encrypt_metadata) :
	 V(V),
	 R(R),
	 Length_bytes(Length_bytes),
	 P(P),
	 O(O),
	 U(U),
 OE(OE),
 UE(UE),
 Perms(Perms),
	 id1(id1),
	 encrypt_metadata(encrypt_metadata)
	{
	}

	int getV() const;
	int getR() const;
	int getLengthBytes() const;
	int getP() const;
	std::string const& getO() const;
	std::string const& getU() const;
	std::string const& getOE() const;
	std::string const& getUE() const;
	std::string const& getPerms() const;
	std::string const& getId1() const;
	bool getEncryptMetadata() const;

 void setO(std::string const&);
 void setU(std::string const&);
 void setV5EncryptionParameters(std::string const& O,
 std::string const& OE,
 std::string const& U,
 std::string const& UE,
 std::string const& Perms);

 private:
 EncryptionData(EncryptionData const&);
 EncryptionData& operator=(EncryptionData const&);

	int V;
	int R;
	int Length_bytes;
	int P;
	std::string O;
	std::string U;
 std::string OE;
 std::string UE;
 std::string Perms;
	std::string id1;
	bool encrypt_metadata;
 };

 QPDF_DLL
 bool isEncrypted() const;

 QPDF_DLL
 bool isEncrypted(int& R, int& P);

 QPDF_DLL
 bool isEncrypted(int& R, int& P, int& V,
 encryption_method_e& stream_method,
 encryption_method_e& string_method,
 encryption_method_e& file_method);

 // Encryption permissions -- not enforced by QPDF
 QPDF_DLL
 bool allowAccessibility();
 QPDF_DLL
 bool allowExtractAll();
 QPDF_DLL
 bool allowPrintLowRes();
 QPDF_DLL
 bool allowPrintHighRes();
 QPDF_DLL
 bool allowModifyAssembly();
 QPDF_DLL
 bool allowModifyForm();
 QPDF_DLL
 bool allowModifyAnnotation();
 QPDF_DLL
 bool allowModifyOther();
 QPDF_DLL
 bool allowModifyAll();

 // Helper function to trim padding from user password. Calling
 // trim_user_password on the result of getPaddedUserPassword gives
 // getTrimmedUserPassword's result.
 QPDF_DLL
 static void trim_user_password(std::string& user_password);
 QPDF_DLL
 static std::string compute_data_key(
	std::string const& encryption_key, int objid, int generation,
	bool use_aes, int encryption_V, int encryption_R);
 QPDF_DLL
 static std::string compute_encryption_key(
	std::string const& password, EncryptionData const& data);

 QPDF_DLL
 static void compute_encryption_O_U(
	char const* user_password, char const* owner_password,
	int V, int R, int key_len, int P, bool encrypt_metadata,
	std::string const& id1,
	std::string& O, std::string& U);
 QPDF_DLL
 static void compute_encryption_parameters_V5(
	char const* user_password, char const* owner_password,
	int V, int R, int key_len, int P, bool encrypt_metadata,
	std::string const& id1,
 std::string& encryption_key,
	std::string& O, std::string& U,
 std::string& OE, std::string& UE, std::string& Perms);
 // Return the full user password as stored in the PDF file. For
 // files encrypted with 40-bit or 128-bit keys, the user password
 // can be recovered when the file is opened using the owner
 // password. This is not possible with newer encryption formats.
 // If you are attempting to recover the user password in a
 // user-presentable form, call getTrimmedUserPassword() instead.
 QPDF_DLL
 std::string const& getPaddedUserPassword() const;
 // Return human-readable form of user password subject to same
 // limitations as getPaddedUserPassword().
 QPDF_DLL
 std::string getTrimmedUserPassword() const;
 // Return the previously computed or retrieved encryption key for
 // this file
 QPDF_DLL
 std::string getEncryptionKey() const;

 // Linearization support

 // Returns true iff the file starts with a linearization parameter
 // dictionary. Does no additional validation.
 QPDF_DLL
 bool isLinearized();

 // Performs various sanity checks on a linearized file. Return
 // true if no errors or warnings. Otherwise, return false and
 // output errors and warnings to std::cout or the output stream
 // specified in a call to setOutputStreams.
 QPDF_DLL
 bool checkLinearization();

 // Calls checkLinearization() and, if possible, prints normalized
 // contents of some of the hints tables to std::cout or the output
 // stream specified in a call to setOutputStreams. Normalization
 // includes adding min values to delta values and adjusting
 // offsets based on the location and size of the primary hint
 // stream.
 QPDF_DLL
 void showLinearizationData();

 // Shows the contents of the cross-reference table
 QPDF_DLL
 void showXRefTable();

 // Optimization support -- see doc/optimization. Implemented in
 // QPDF_optimization.cc

 // The object_stream_data map maps from a "compressed" object to
 // the object stream that contains it. This enables optimize to
 // populate the object <-> user maps with only uncompressed
 // objects. If allow_changes is false, an exception will be
 // thrown if any changes are made during the optimization process.
 // This is available so that the test suite can make sure that a
 // linearized file is already optimized. When called in this way,
 // optimize() still populates the object <-> user maps
 QPDF_DLL
 void optimize(std::map<int, int> const& object_stream_data,
		 bool allow_changes = true);

 // Convenience routines for common functions. See also
 // QPDFObjectHandle.hh for additional convenience routines.

 // Page handling API

 // Traverse page tree return all /Page objects. Note that calls
 // to page manipulation APIs will change the internal vector that
 // this routine returns a pointer to. If you don't want that,
 // assign this to a regular vector rather than a const reference.
 QPDF_DLL
 std::vector<QPDFObjectHandle> const& getAllPages();

 // This method synchronizes QPDF's cache of the page structure
 // with the actual /Pages tree. If you restrict changes to the
 // /Pages tree, including addition, removal, or replacement of
 // pages or changes to any /Pages objects, to calls to these page
 // handling APIs, you never need to call this method. If you
 // modify /Pages structures directly, you must call this method
 // afterwards. This method updates the internal list of pages, so
 // after calling this method, any previous references returned by
 // getAllPages() will be valid again. It also resets any state
 // about having pushed inherited attributes in /Pages objects down
 // to the pages, so if you add any inheritable attributes to a
 // /Pages object, you should also call this method.
 QPDF_DLL
 void updateAllPagesCache();

 // The PDF /Pages tree allows inherited values. Working with
 // the pages of a pdf is much easier when the inheritance is
 // resolved by explicitly setting the values in each /Page.
 QPDF_DLL
 void pushInheritedAttributesToPage();

 // Add new page at the beginning or the end of the current pdf.
 // The newpage parameter may be either a direct object, an
 // indirect object from this QPDF, or an indirect object from
 // another QPDF. If it is a direct object, it will be made
 // indirect. If it is an indirect object from another QPDF, this
 // method will call pushInheritedAttributesToPage on the other
 // file and then copy the page to this QPDF using the same
 // underlying code as copyForeignObject.
 QPDF_DLL
 void addPage(QPDFObjectHandle newpage, bool first);

 // Add new page before or after refpage. See comments for addPage
 // for details about what newpage should be.
 QPDF_DLL
 void addPageAt(QPDFObjectHandle newpage, bool before,
 QPDFObjectHandle refpage);

 // Remove page from the pdf.
 QPDF_DLL
 void removePage(QPDFObjectHandle page);

 // Writer class is restricted to QPDFWriter so that only it can
 // call certain methods.
 class Writer
 {
 friend class QPDFWriter;
 private:

 static void getLinearizedParts(
 QPDF& qpdf,
 std::map<int, int> const& object_stream_data,
 std::vector<QPDFObjectHandle>& part4,
 std::vector<QPDFObjectHandle>& part6,
 std::vector<QPDFObjectHandle>& part7,
 std::vector<QPDFObjectHandle>& part8,
 std::vector<QPDFObjectHandle>& part9)
 {
 qpdf.getLinearizedParts(object_stream_data,
 part4, part6, part7, part8, part9);
 }

 static void generateHintStream(
 QPDF& qpdf,
 std::map<int, QPDFXRefEntry> const& xref,
 std::map<int, qpdf_offset_t> const& lengths,
 std::map<int, int> const& obj_renumber,
 PointerHolder<Buffer>& hint_stream,
 int& S, int& O)
 {
 return qpdf.generateHintStream(xref, lengths, obj_renumber,
 hint_stream, S, O);
 }

 static void getObjectStreamData(QPDF& qpdf, std::map<int, int>& omap)
 {
 qpdf.getObjectStreamData(omap);
 }

 static std::vector<QPDFObjGen> getCompressibleObjGens(QPDF& qpdf)
 {
 return qpdf.getCompressibleObjGens();
 }
 };

 // Resolver class is restricted to QPDFObjectHandle so that only
 // it can resolve indirect references.
 class Resolver
 {
	friend class QPDFObjectHandle;
 private:
	static PointerHolder<QPDFObject> resolve(
	 QPDF* qpdf, int objid, int generation)
	{
	 return qpdf->resolve(objid, generation);
	}
 };
 friend class Resolver;

 // Pipe class is restricted to QPDF_Stream
 class Pipe
 {
	friend class QPDF_Stream;
 private:
	static void pipeStreamData(QPDF* qpdf, int objid, int generation,
				 qpdf_offset_t offset, size_t length,
				 QPDFObjectHandle dict,
				 Pipeline* pipeline)
	{
	 qpdf->pipeStreamData(
		objid, generation, offset, length, dict, pipeline);
	}
 };
 friend class Pipe;

 private:
 static std::string qpdf_version;

 class ObjCache
 {
 public:
	ObjCache() :
	 end_before_space(0),
	 end_after_space(0)
	{
	}
	ObjCache(PointerHolder<QPDFObject> object,
		 qpdf_offset_t end_before_space,
		 qpdf_offset_t end_after_space) :
	 object(object),
	 end_before_space(end_before_space),
	 end_after_space(end_after_space)
	{
	}

	PointerHolder<QPDFObject> object;
	qpdf_offset_t end_before_space;
	qpdf_offset_t end_after_space;
 };

 class ObjCopier
 {
 public:
 std::map<QPDFObjGen, QPDFObjectHandle> object_map;
 std::vector<QPDFObjectHandle> to_copy;
 std::set<QPDFObjGen> visiting;
 };

 class CopiedStreamDataProvider: public QPDFObjectHandle::StreamDataProvider
 {
 public:
 virtual ~CopiedStreamDataProvider()
 {
 }
	virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline);
 void registerForeignStream(QPDFObjGen const& local_og,
 QPDFObjectHandle foreign_stream);

 private:
 std::map<QPDFObjGen, QPDFObjectHandle> foreign_streams;
 };

 class StringDecrypter: public QPDFObjectHandle::StringDecrypter
 {
 friend class QPDF;

 public:
 StringDecrypter(QPDF* qpdf, int objid, int gen);
 virtual ~StringDecrypter()
 {
 }
 virtual void decryptString(std::string& val);

 private:
 QPDF* qpdf;
 int objid;
 int gen;
 };

 void parse(char const* password);
 void warn(QPDFExc const& e);
 void setTrailer(QPDFObjectHandle obj);
 void read_xref(qpdf_offset_t offset);
 void reconstruct_xref(QPDFExc& e);
 qpdf_offset_t read_xrefTable(qpdf_offset_t offset);
 qpdf_offset_t read_xrefStream(qpdf_offset_t offset);
 qpdf_offset_t processXRefStream(
 qpdf_offset_t offset, QPDFObjectHandle& xref_stream);
 void insertXrefEntry(int obj, int f0, qpdf_offset_t f1, int f2,
			 bool overwrite = false);
 void setLastObjectDescription(std::string const& description,
				 int objid, int generation);
 QPDFObjectHandle readObject(
	PointerHolder<InputSource>, std::string const& description,
	int objid, int generation, bool in_object_stream);
 size_t recoverStreamLength(
	PointerHolder<InputSource> input, int objid, int generation,
	qpdf_offset_t stream_offset);
 QPDFTokenizer::Token readToken(PointerHolder<InputSource>);

 QPDFObjectHandle readObjectAtOffset(
	bool attempt_recovery,
	qpdf_offset_t offset, std::string const& description,
	int exp_objid, int exp_generation,
	int& act_objid, int& act_generation);
 PointerHolder<QPDFObject> resolve(int objid, int generation);
 void resolveObjectsInStream(int obj_stream_number);
 void findAttachmentStreams();

 // Calls finish() on the pipeline when done but does not delete it
 void pipeStreamData(int objid, int generation,
			qpdf_offset_t offset, size_t length,
			QPDFObjectHandle dict,
			Pipeline* pipeline);

 // For QPDFWriter:

 // Get lists of all objects in order according to the part of a
 // linearized file that they belong to.
 void getLinearizedParts(
	std::map<int, int> const& object_stream_data,
	std::vector<QPDFObjectHandle>& part4,
	std::vector<QPDFObjectHandle>& part6,
	std::vector<QPDFObjectHandle>& part7,
	std::vector<QPDFObjectHandle>& part8,
	std::vector<QPDFObjectHandle>& part9);

 void generateHintStream(std::map<int, QPDFXRefEntry> const& xref,
			 std::map<int, qpdf_offset_t> const& lengths,
			 std::map<int, int> const& obj_renumber,
			 PointerHolder<Buffer>& hint_stream,
			 int& S, int& O);

 // Map object to object stream that contains it
 void getObjectStreamData(std::map<int, int>&);

 // Get a list of objects that would be permitted in an object
 // stream.
 std::vector<QPDFObjGen> getCompressibleObjGens();

 // methods to support page handling

 void getAllPagesInternal(QPDFObjectHandle cur_pages,
			 std::vector<QPDFObjectHandle>& result);
 void getAllPagesInternal2(QPDFObjectHandle cur_pages,
 std::vector<QPDFObjectHandle>& result,
 std::set<QPDFObjGen>& visited);
 void insertPage(QPDFObjectHandle newpage, int pos);
 int findPage(QPDFObjGen const& og);
 int findPage(QPDFObjectHandle& page);
 void flattenPagesTree();
 void insertPageobjToPage(QPDFObjectHandle const& obj, int pos,
 bool check_duplicate);

 // methods to support encryption -- implemented in QPDF_encryption.cc
 encryption_method_e interpretCF(QPDFObjectHandle);
 void initializeEncryption();
 std::string getKeyForObject(int objid, int generation, bool use_aes);
 void decryptString(std::string&, int objid, int generation);
 static std::string compute_encryption_key_from_password(
 std::string const& password, EncryptionData const& data);
 static std::string recover_encryption_key_with_password(
 std::string const& password, EncryptionData const& data);
 static std::string recover_encryption_key_with_password(
 std::string const& password, EncryptionData const& data,
 bool& perms_valid);
 void decryptStream(
	Pipeline*& pipeline, int objid, int generation,
	QPDFObjectHandle& stream_dict,
	std::vector<PointerHolder<Pipeline> >& heap);

 // Methods to support object copying
 QPDFObjectHandle copyForeignObject(
 QPDFObjectHandle foreign, bool allow_page);
 void reserveObjects(QPDFObjectHandle foreign, ObjCopier& obj_copier,
 bool top);
 QPDFObjectHandle replaceForeignIndirectObjects(
 QPDFObjectHandle foreign, ObjCopier& obj_copier, bool top);

 // Linearization Hint table structures.
 // Naming conventions:

 // HSomething is the Something Hint Table or table header
 // HSomethingEntry is an entry in the Something table

 // delta_something + min_something = something
 // nbits_something = number of bits required for something

 // something_offset is the pre-adjusted offset in the file. If >=
 // H0_offset, H0_length must be added to get an actual file
 // offset.

 // PDF 1.4: Table F.4
 struct HPageOffsetEntry
 {
	HPageOffsetEntry() :
	 delta_nobjects(0),
	 delta_page_length(0),
	 nshared_objects(0),
	 delta_content_offset(0),
	 delta_content_length(0)
	{
	}

	int delta_nobjects;			 // 1
	qpdf_offset_t delta_page_length; // 2
	int nshared_objects;			 // 3
	// vectors' sizes = nshared_objects
	std::vector<int> shared_identifiers;	 // 4
	std::vector<int> shared_numerators;	 // 5
	qpdf_offset_t delta_content_offset; // 6
 qpdf_offset_t delta_content_length; // 7
 };

 // PDF 1.4: Table F.3
 struct HPageOffset
 {
	HPageOffset() :
	 min_nobjects(0),
	 first_page_offset(0),
	 nbits_delta_nobjects(0),
	 min_page_length(0),
	 nbits_delta_page_length(0),
	 min_content_offset(0),
	 nbits_delta_content_offset(0),
	 min_content_length(0),
	 nbits_delta_content_length(0),
	 nbits_nshared_objects(0),
	 nbits_shared_identifier(0),
	 nbits_shared_numerator(0),
	 shared_denominator(0)
	{
	}

	int min_nobjects;			 // 1
	qpdf_offset_t first_page_offset; // 2
	int nbits_delta_nobjects;		 // 3
	int min_page_length;			 // 4
	int nbits_delta_page_length;		 // 5
	int min_content_offset;			 // 6
	int nbits_delta_content_offset;		 // 7
	int min_content_length;			 // 8
	int nbits_delta_content_length;		 // 9
	int nbits_nshared_objects;		 // 10
	int nbits_shared_identifier;		 // 11
	int nbits_shared_numerator;		 // 12
	int shared_denominator;			 // 13
	// vector size is npages
	std::vector<HPageOffsetEntry> entries;
 };

 // PDF 1.4: Table F.6
 struct HSharedObjectEntry
 {
	HSharedObjectEntry() :
	 delta_group_length(0),
	 signature_present(0),
	 nobjects_minus_one(0)
	{
	}

	// Item 3 is a 128-bit signature (unsupported by Acrobat)
	int delta_group_length;		 	 // 1
	int signature_present;			 // 2 -- always 0
	int nobjects_minus_one;			 // 4 -- always 0
 };

 // PDF 1.4: Table F.5
 struct HSharedObject
 {
	HSharedObject() :
	 first_shared_obj(0),
	 first_shared_offset(0),
	 nshared_first_page(0),
	 nshared_total(0),
	 nbits_nobjects(0),
	 min_group_length(0),
	 nbits_delta_group_length(0)
	{
	}

	int first_shared_obj;			 // 1
	qpdf_offset_t first_shared_offset; // 2
	int nshared_first_page;			 // 3
	int nshared_total;			 // 4
	int nbits_nobjects;			 // 5
	int min_group_length;			 // 6
	int nbits_delta_group_length;		 // 7
	// vector size is nshared_total
	std::vector<HSharedObjectEntry> entries;
 };

 // PDF 1.4: Table F.9
 struct HGeneric
 {
	HGeneric() :
	 first_object(0),
	 first_object_offset(0),
	 nobjects(0),
	 group_length(0)
	{
	}

	int first_object;			 // 1
	qpdf_offset_t first_object_offset; // 2
	int nobjects;				 // 3
	int group_length;			 // 4
 };

 // Other linearization data structures

 // Initialized from Linearization Parameter dictionary
 struct LinParameters
 {
	LinParameters() :
	 file_size(0),
	 first_page_object(0),
	 first_page_end(0),
	 npages(0),
	 xref_zero_offset(0),
	 first_page(0),
	 H_offset(0),
	 H_length(0)
	{
	}

	qpdf_offset_t file_size; // /L
	int first_page_object; // /O
	qpdf_offset_t first_page_end;	// /E
	int npages; // /N
	qpdf_offset_t xref_zero_offset;	// /T
	int first_page; // /P
 qpdf_offset_t H_offset;		// offset of primary hint stream
	qpdf_offset_t H_length;		// length of primary hint stream
 };

 // Computed hint table value data structures. These tables
 // contain the computed values on which the hint table values are
 // based. They exclude things like number of bits and store
 // actual values instead of mins and deltas. File offsets are
 // also absolute rather than being offset by the size of the
 // primary hint table. We populate the hint table structures from
 // these during writing and compare the hint table values with
 // these during validation. We ignore some values for various
 // reasons described in the code. Those values are omitted from
 // these structures. Note also that object numbers are object
 // numbers from the input file, not the output file.

 // Naming convention: CHSomething is analogous to HSomething
 // above. "CH" is computed hint.

 struct CHPageOffsetEntry
 {
	CHPageOffsetEntry() :
	 nobjects(0),
	 nshared_objects(0)
	{
	}

	int nobjects;
	int nshared_objects;
	// vectors' sizes = nshared_objects
	std::vector<int> shared_identifiers;
 };

 struct CHPageOffset
 {
	// vector size is npages
	std::vector<CHPageOffsetEntry> entries;
 };

 struct CHSharedObjectEntry
 {
	CHSharedObjectEntry(int object) :
	 object(object)
	{
	}

	int object;
 };

 // PDF 1.4: Table F.5
 struct CHSharedObject
 {
	CHSharedObject() :
	 first_shared_obj(0),
	 nshared_first_page(0),
	 nshared_total(0)
	{
	}

	int first_shared_obj;
	int nshared_first_page;
	int nshared_total;
	// vector size is nshared_total
	std::vector<CHSharedObjectEntry> entries;
 };

 // No need for CHGeneric -- HGeneric is fine as is.

 // Data structures to support optimization -- implemented in
 // QPDF_optimization.cc

 class ObjUser
 {
 public:
	enum user_e
	{
	 ou_bad,
	 ou_page,
	 ou_thumb,
	 ou_trailer_key,
	 ou_root_key,
	 ou_root
	};

	// type is set to ou_bad
	ObjUser();

	// type must be ou_root
	ObjUser(user_e type);

	// type must be one of ou_page or ou_thumb
	ObjUser(user_e type, int pageno);

	// type must be one of ou_trailer_key or ou_root_key
	ObjUser(user_e type, std::string const& key);

	bool operator<(ObjUser const&) const;

	user_e ou_type;
	int pageno;		// if ou_page;
	std::string key;	// if ou_trailer_key or ou_root_key
 };

 // methods to support linearization checking -- implemented in
 // QPDF_linearization.cc
 void readLinearizationData();
 bool checkLinearizationInternal();
 void dumpLinearizationDataInternal();
 QPDFObjectHandle readHintStream(
 Pipeline&, qpdf_offset_t offset, size_t length);
 void readHPageOffset(BitStream);
 void readHSharedObject(BitStream);
 void readHGeneric(BitStream, HGeneric&);
 qpdf_offset_t maxEnd(ObjUser const& ou);
 qpdf_offset_t getLinearizationOffset(QPDFObjGen const&);
 QPDFObjectHandle getUncompressedObject(
	QPDFObjectHandle&, std::map<int, int> const& object_stream_data);
 int lengthNextN(int first_object, int n,
		 std::list<std::string>& errors);
 void checkHPageOffset(std::list<std::string>& errors,
			 std::list<std::string>& warnings,
			 std::vector<QPDFObjectHandle> const& pages,
			 std::map<int, int>& idx_to_obj);
 void checkHSharedObject(std::list<std::string>& warnings,
			 std::list<std::string>& errors,
			 std::vector<QPDFObjectHandle> const& pages,
			 std::map<int, int>& idx_to_obj);
 void checkHOutlines(std::list<std::string>& warnings);
 void dumpHPageOffset();
 void dumpHSharedObject();
 void dumpHGeneric(HGeneric&);
 int adjusted_offset(int offset);
 QPDFObjectHandle objGenToIndirect(QPDFObjGen const&);
 void calculateLinearizationData(
	std::map<int, int> const& object_stream_data);
 void pushOutlinesToPart(
	std::vector<QPDFObjectHandle>& part,
	std::set<QPDFObjGen>& lc_outlines,
	std::map<int, int> const& object_stream_data);
 int outputLengthNextN(
	int in_object, int n,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void calculateHPageOffset(
	std::map<int, QPDFXRefEntry> const& xref,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void calculateHSharedObject(
	std::map<int, QPDFXRefEntry> const& xref,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void calculateHOutline(
	std::map<int, QPDFXRefEntry> const& xref,
	std::map<int, qpdf_offset_t> const& lengths,
	std::map<int, int> const& obj_renumber);
 void writeHPageOffset(BitWriter&);
 void writeHSharedObject(BitWriter&);
 void writeHGeneric(BitWriter&, HGeneric&);

 // Methods to support optimization

 void pushInheritedAttributesToPage(bool allow_changes,
 bool warn_skipped_keys);
 void pushInheritedAttributesToPageInternal(
	QPDFObjectHandle,
	std::map<std::string, std::vector<QPDFObjectHandle> >&,
	std::vector<QPDFObjectHandle>& all_pages,
	bool allow_changes, bool warn_skipped_keys);
 void pushInheritedAttributesToPageInternal2(
	QPDFObjectHandle,
	std::map<std::string, std::vector<QPDFObjectHandle> >&,
	std::vector<QPDFObjectHandle>& all_pages,
	bool allow_changes, bool warn_skipped_keys,
 std::set<QPDFObjGen>& visited);
 void updateObjectMaps(ObjUser const& ou, QPDFObjectHandle oh);
 void updateObjectMapsInternal(ObjUser const& ou, QPDFObjectHandle oh,
				 std::set<QPDFObjGen>& visited, bool top);
 void filterCompressedObjects(std::map<int, int> const& object_stream_data);

 QPDFTokenizer tokenizer;
 PointerHolder<InputSource> file;
 std::string last_object_description;
 bool encrypted;
 bool encryption_initialized;
 bool ignore_xref_streams;
 bool suppress_warnings;
 std::ostream* out_stream;
 std::ostream* err_stream;
 bool attempt_recovery;
 int encryption_V;
 int encryption_R;
 bool encrypt_metadata;
 std::map<std::string, encryption_method_e> crypt_filters;
 encryption_method_e cf_stream;
 encryption_method_e cf_string;
 encryption_method_e cf_file;
 std::string provided_password;
 std::string user_password;
 std::string encryption_key;
 std::string cached_object_encryption_key;
 int cached_key_objid;
 int cached_key_generation;
 std::string pdf_version;
 std::map<QPDFObjGen, QPDFXRefEntry> xref_table;
 std::set<int> deleted_objects;
 std::map<QPDFObjGen, ObjCache> obj_cache;
 QPDFObjectHandle trailer;
 std::vector<QPDFObjectHandle> all_pages;
 std::map<QPDFObjGen, int> pageobj_to_pages_pos;
 bool pushed_inherited_attributes_to_pages;
 std::vector<QPDFExc> warnings;
 std::map<QPDF*, ObjCopier> object_copiers;
 PointerHolder<QPDFObjectHandle::StreamDataProvider> copied_streams;
 // copied_stream_data_provider is owned by copied_streams
 CopiedStreamDataProvider* copied_stream_data_provider;
 std::set<QPDFObjGen> attachment_streams;

 // Linearization data
 qpdf_offset_t first_xref_item_offset; // actual value from file
 bool uncompressed_after_compressed;

 // Linearization parameter dictionary and hint table data: may be
 // read from file or computed prior to writing a linearized file
 QPDFObjectHandle lindict;
 LinParameters linp;
 HPageOffset page_offset_hints;
 HSharedObject shared_object_hints;
 HGeneric outline_hints;

 // Computed linearization data: used to populate above tables
 // during writing and to compare with them during validation. c_
 // means computed.
 LinParameters c_linp;
 CHPageOffset c_page_offset_data;
 CHSharedObject c_shared_object_data;
 HGeneric c_outline_data;

 // Object ordering data for linearized files: initialized by
 // calculateLinearizationData(). Part numbers refer to the PDF
 // 1.4 specification.
 std::vector<QPDFObjectHandle> part4;
 std::vector<QPDFObjectHandle> part6;
 std::vector<QPDFObjectHandle> part7;
 std::vector<QPDFObjectHandle> part8;
 std::vector<QPDFObjectHandle> part9;

 // Optimization data
 std::map<ObjUser, std::set<QPDFObjGen> > obj_user_to_objects;
 std::map<QPDFObjGen, std::set<ObjUser> > object_to_obj_users;
};

#endif // __QPDF_HH__

@unixroot/usr/include/qpdf/QPDFExc.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDFEXC_HH__
#define __QPDFEXC_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <qpdf/Constants.h>
#include <string>
#include <stdexcept>

class QPDFExc: public std::runtime_error
{
 public:
 QPDF_DLL
 QPDFExc(qpdf_error_code_e error_code,
	 std::string const& filename,
	 std::string const& object,
	 qpdf_offset_t offset,
	 std::string const& message);
 QPDF_DLL
 virtual ~QPDFExc() throw ();

 // To get a complete error string, call what(), provided by
 // std::exception. The accessors below return the original values
 // used to create the exception. Only the error code and message
 // are guaranteed to have non-zero/empty values.

 // There is no lookup code that maps numeric error codes into
 // strings. The numeric error code is just another way to get at
 // the underlying issue, but it is more programmer-friendly than
 // trying to parse a string that is subject to change.

 QPDF_DLL
 qpdf_error_code_e getErrorCode() const;
 QPDF_DLL
 std::string const& getFilename() const;
 QPDF_DLL
 std::string const& getObject() const;
 QPDF_DLL
 qpdf_offset_t getFilePosition() const;
 QPDF_DLL
 std::string const& getMessageDetail() const;

 private:
 static std::string createWhat(std::string const& filename,
				 std::string const& object,
				 qpdf_offset_t offset,
				 std::string const& message);

 qpdf_error_code_e error_code;
 std::string filename;
 std::string object;
 qpdf_offset_t offset;
 std::string message;
};

#endif // __QPDFEXC_HH__

@unixroot/usr/include/qpdf/QPDFObject.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDFOBJECT_HH__
#define __QPDFOBJECT_HH__

#include <qpdf/DLL.h>

#include <string>

class QPDF;
class QPDFObjectHandle;

class QPDFObject
{
 public:

 // Objects derived from QPDFObject are accessible through
 // QPDFObjectHandle. Each object returns a unique type code that
 // has one of the values in the list below. As new object types
 // are added to qpdf, additional items may be added to the list,
 // so code that switches on these values should take that into
 // consideration.
 enum object_type_e {
 // Object types internal to qpdf
 ot_uninitialized,
 ot_reserved,
 // Object types that can occur in the main document
 ot_null,
 ot_boolean,
 ot_integer,
 ot_real,
 ot_string,
 ot_name,
 ot_array,
 ot_dictionary,
 ot_stream,
 // Additional object types that can occur in content streams
 ot_operator,
 ot_inlineimage,
 };

 virtual ~QPDFObject() {}
 virtual std::string unparse() = 0;

 // Return a unique type code for the object
 virtual object_type_e getTypeCode() const = 0;

 // Return a string literal that describes the type, useful for
 // debugging and testing
 virtual char const* getTypeName() const = 0;

 // Accessor to give specific access to non-public methods
 class ObjAccessor
 {
	friend class QPDF;
	friend class QPDFObjectHandle;
 private:
	static void releaseResolved(QPDFObject* o)
	{
	 if (o)
	 {
		o->releaseResolved();
	 }
	}
 };
 friend class ObjAccessor;

 protected:
 virtual void releaseResolved() {}
};

#endif // __QPDFOBJECT_HH__

@unixroot/usr/include/qpdf/QPDFObjectHandle.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDFOBJECTHANDLE_HH__
#define __QPDFOBJECTHANDLE_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <string>
#include <vector>
#include <set>
#include <map>

#include <qpdf/QPDFObjGen.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/InputSource.hh>

#include <qpdf/QPDFObject.hh>

class Pipeline;
class QPDF;
class QPDF_Dictionary;
class QPDF_Array;
class QPDFTokenizer;

class QPDFObjectHandle
{
 public:
 // This class is used by replaceStreamData. It provides an
 // alternative way of associating stream data with a stream. See
 // comments on replaceStreamData and newStream for additional
 // details.
 class StreamDataProvider
 {
 public:
	QPDF_DLL
	virtual ~StreamDataProvider()
	{
	}
	// The implementation of this function must write the
	// unencrypted, raw stream data to the given pipeline. Every
	// call to provideStreamData for a given stream must write the
	// same data. The number of bytes written must agree with the
	// length provided at the time the StreamDataProvider object
	// was associated with the stream. The object ID and
	// generation passed to this method are those that belong to
	// the stream on behalf of which the provider is called. They
	// may be ignored or used by the implementation for indexing
	// or other purposes. This information is made available just
	// to make it more convenient to use a single
	// StreamDataProvider object to provide data for multiple
	// streams.
	virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline) = 0;
 };

 // This class is used by parse to decrypt strings when reading an
 // object that contains encrypted strings.
 class StringDecrypter
 {
 public:
 QPDF_DLL
 virtual ~StringDecrypter()
 {
 }
 virtual void decryptString(std::string& val) = 0;
 };

 // This class is used by parseContentStream. Callers must
 // instantiate a subclass of this with handlers defined to accept
 // QPDFObjectHandles that are parsed from the stream.
 class ParserCallbacks
 {
 public:
 QPDF_DLL
 virtual ~ParserCallbacks()
 {
 }
 virtual void handleObject(QPDFObjectHandle) = 0;
 virtual void handleEOF() = 0;

 protected:
 // Implementors may call this method during parsing to
 // terminate parsing early. This method throws an exception
 // that is caught by parseContentStream, so its effect is
 // immediate.
 QPDF_DLL
 void terminateParsing();
 };

 QPDF_DLL
 QPDFObjectHandle();
 QPDF_DLL
 bool isInitialized() const;

 // Return type code and type name of underlying object. These are
 // useful for doing rapid type tests (like switch statements) or
 // for testing and debugging.
 QPDF_DLL
 QPDFObject::object_type_e getTypeCode();
 QPDF_DLL
 char const* getTypeName();

 // Exactly one of these will return true for any object. Operator
 // and InlineImage are only allowed in content streams.
 QPDF_DLL
 bool isBool();
 QPDF_DLL
 bool isNull();
 QPDF_DLL
 bool isInteger();
 QPDF_DLL
 bool isReal();
 QPDF_DLL
 bool isName();
 QPDF_DLL
 bool isString();
 QPDF_DLL
 bool isOperator();
 QPDF_DLL
 bool isInlineImage();
 QPDF_DLL
 bool isArray();
 QPDF_DLL
 bool isDictionary();
 QPDF_DLL
 bool isStream();
 QPDF_DLL
 bool isReserved();

 // This returns true in addition to the query for the specific
 // type for indirect objects.
 QPDF_DLL
 bool isIndirect();

 // True for everything except array, dictionary, stream, word, and
 // inline image.
 QPDF_DLL
 bool isScalar();

 // Public factory methods

 // Construct an object of any type from a string representation of
 // the object. Throws QPDFExc with an empty filename and an
 // offset into the string if there is an error. Any indirect
 // object syntax (obj gen R) will cause a logic_error exception to
 // be thrown. If object_description is provided, it will appear
 // in the message of any QPDFExc exception thrown for invalid
 // syntax.
 QPDF_DLL
 static QPDFObjectHandle parse(std::string const& object_str,
 std::string const& object_description = "");

 // Construct an object as above by reading from the given
 // InputSource at its current position and using the tokenizer you
 // supply. Indirect objects and encrypted strings are permitted.
 // This method is intended to be called by QPDF for parsing
 // objects that are ready from the object's input stream.
 QPDF_DLL
 static QPDFObjectHandle parse(PointerHolder<InputSource> input,
 std::string const& object_description,
 QPDFTokenizer&, bool& empty,
 StringDecrypter* decrypter,
 QPDF* context);

 // Helpers for parsing content streams
 QPDF_DLL
 static void parseContentStream(QPDFObjectHandle stream_or_array,
 ParserCallbacks* callbacks);

 // Type-specific factories
 QPDF_DLL
 static QPDFObjectHandle newNull();
 QPDF_DLL
 static QPDFObjectHandle newBool(bool value);
 QPDF_DLL
 static QPDFObjectHandle newInteger(long long value);
 QPDF_DLL
 static QPDFObjectHandle newReal(std::string const& value);
 QPDF_DLL
 static QPDFObjectHandle newReal(double value, int decimal_places = 0);
 QPDF_DLL
 static QPDFObjectHandle newName(std::string const& name);
 QPDF_DLL
 static QPDFObjectHandle newString(std::string const& str);
 QPDF_DLL
 static QPDFObjectHandle newOperator(std::string const&);
 QPDF_DLL
 static QPDFObjectHandle newInlineImage(std::string const&);
 QPDF_DLL
 static QPDFObjectHandle newArray();
 QPDF_DLL
 static QPDFObjectHandle newArray(
	std::vector<QPDFObjectHandle> const& items);
 QPDF_DLL
 static QPDFObjectHandle newDictionary();
 QPDF_DLL
 static QPDFObjectHandle newDictionary(
	std::map<std::string, QPDFObjectHandle> const& items);

 // Create a new stream and associate it with the given qpdf
 // object. A subsequent call must be made to replaceStreamData()
 // to provide data for the stream. The stream's dictionary may be
 // retrieved by calling getDict(), and the resulting dictionary
 // may be modified. Alternatively, you can create a new
 // dictionary and call replaceDict to install it.
 QPDF_DLL
 static QPDFObjectHandle newStream(QPDF* qpdf);

 // Create a new stream and associate it with the given qpdf
 // object. Use the given buffer as the stream data. The stream
 // dictionary's /Length key will automatically be set to the size
 // of the data buffer. If additional keys are required, the
 // stream's dictionary may be retrieved by calling getDict(), and
 // the resulting dictionary may be modified. This method is just
 // a convenient wrapper around the newStream() and
 // replaceStreamData(). It is a convenience methods for streams
 // that require no parameters beyond the stream length. Note that
 // you don't have to deal with compression yourself if you use
 // QPDFWriter. By default, QPDFWriter will automatically compress
 // uncompressed stream data. Example programs are provided that
 // illustrate this.
 QPDF_DLL
 static QPDFObjectHandle newStream(QPDF* qpdf, PointerHolder<Buffer> data);

 // Create new stream with data from string. This method will
 // create a copy of the data rather than using the user-provided
 // buffer as in the PointerHolder<Buffer> version of newStream.
 QPDF_DLL
 static QPDFObjectHandle newStream(QPDF* qpdf, std::string const& data);

 // A reserved object is a special sentinel used for qpdf to
 // reserve a spot for an object that is going to be added to the
 // QPDF object. Normally you don't have to use this type since
 // you can just call QPDF::makeIndirectObject. However, in some
 // cases, if you have to create objects with circular references,
 // you may need to create a reserved object so that you can have a
 // reference to it and then replace the object later. Reserved
 // objects have the special property that they can't be resolved
 // to direct objects. This makes it possible to replace a
 // reserved object with a new object while preserving existing
 // references to them. When you are ready to replace a reserved
 // object with its replacement, use QPDF::replaceReserved for this
 // purpose rather than the more general QPDF::replaceObject. It
 // is an error to try to write a QPDF with QPDFWriter if it has
 // any reserved objects in it.
 QPDF_DLL
 static QPDFObjectHandle newReserved(QPDF* qpdf);

 // Accessor methods. If an accessor method that is valid for only
 // a particular object type is called on an object of the wrong
 // type, an exception is thrown.

 // Methods for bool objects
 QPDF_DLL
 bool getBoolValue();

 // Methods for integer objects
 QPDF_DLL
 long long getIntValue();

 // Methods for real objects
 QPDF_DLL
 std::string getRealValue();

 // Methods that work for both integer and real objects
 QPDF_DLL
 bool isNumber();
 QPDF_DLL
 double getNumericValue();

 // Methods for name objects; see also name and array objects
 QPDF_DLL
 std::string getName();

 // Methods for string objects
 QPDF_DLL
 std::string getStringValue();
 QPDF_DLL
 std::string getUTF8Value();

 // Methods for content stream objects
 QPDF_DLL
 std::string getOperatorValue();
 QPDF_DLL
 std::string getInlineImageValue();

 // Methods for array objects; see also name and array objects
 QPDF_DLL
 int getArrayNItems();
 QPDF_DLL
 QPDFObjectHandle getArrayItem(int n);
 QPDF_DLL
 std::vector<QPDFObjectHandle> getArrayAsVector();

 // Methods for dictionary objects
 QPDF_DLL
 bool hasKey(std::string const&);
 QPDF_DLL
 QPDFObjectHandle getKey(std::string const&);
 QPDF_DLL
 std::set<std::string> getKeys();
 QPDF_DLL
 std::map<std::string, QPDFObjectHandle> getDictAsMap();

 // Methods for name and array objects
 QPDF_DLL
 bool isOrHasName(std::string const&);

 // Return the QPDF object that owns an indirect object. Returns
 // null for a direct object.
 QPDF_DLL
 QPDF* getOwningQPDF();

 // Create a shallow copy of an object as a direct object. Since
 // this is a shallow copy, for dictionaries and arrays, any keys
 // or items that were indirect objects will still be indirect
 // objects that point to the same place.
 QPDF_DLL
 QPDFObjectHandle shallowCopy();

 // Mutator methods. Use with caution.

 // Recursively copy this object, making it direct. Throws an
 // exception if a loop is detected or any sub-object is a stream.
 QPDF_DLL
 void makeDirect();

 // Mutator methods for array objects
 QPDF_DLL
 void setArrayItem(int, QPDFObjectHandle const&);
 QPDF_DLL
 void setArrayFromVector(std::vector<QPDFObjectHandle> const& items);
 // Insert an item before the item at the given position ("at") so
 // that it has that position after insertion. If "at" is equal to
 // the size of the array, insert the item at the end.
 QPDF_DLL
 void insertItem(int at, QPDFObjectHandle const& item);
 QPDF_DLL
 void appendItem(QPDFObjectHandle const& item);
 // Remove the item at that position, reducing the size of the
 // array by one.
 QPDF_DLL
 void eraseItem(int at);

 // Mutator methods for dictionary objects

 // Replace value of key, adding it if it does not exist
 QPDF_DLL
 void replaceKey(std::string const& key, QPDFObjectHandle const&);
 // Remove key, doing nothing if key does not exist
 QPDF_DLL
 void removeKey(std::string const& key);
 // If the object is null, remove the key. Otherwise, replace it.
 QPDF_DLL
 void replaceOrRemoveKey(std::string const& key, QPDFObjectHandle);

 // Methods for stream objects
 QPDF_DLL
 QPDFObjectHandle getDict();

 // Returns filtered (uncompressed) stream data. Throws an
 // exception if the stream is filtered and we can't decode it.
 QPDF_DLL
 PointerHolder<Buffer> getStreamData();
 // Returns unfiltered (raw) stream data.
 QPDF_DLL
 PointerHolder<Buffer> getRawStreamData();

 // Write stream data through the given pipeline. A null pipeline
 // value may be used if all you want to do is determine whether a
 // stream is filterable. If filter is false, write raw stream
 // data and return false. If filter is true, then attempt to
 // apply all the decoding filters to the stream data. If we are
 // successful, return true. Otherwise, return false and write raw
 // data. If filtering is requested and successfully performed,
 // then the normalize and compress flags are used to determine
 // whether stream data should be normalized and compressed. In
 // all cases, if this function returns false, raw data has been
 // written. If it returns true, then any requested filtering has
 // been performed. Note that if the original stream data has no
 // filters applied to it, the return value will be equal to the
 // value of the filter parameter. Callers may use the return
 // value of this function to determine whether or not the /Filter
 // and /DecodeParms keys in the stream dictionary should be
 // replaced if writing a new stream object.
 QPDF_DLL
 bool pipeStreamData(Pipeline*, bool filter,
			bool normalize, bool compress);

 // Replace a stream's dictionary. The new dictionary must be
 // consistent with the stream's data. This is most appropriately
 // used when creating streams from scratch that will use a stream
 // data provider and therefore start with an empty dictionary. It
 // may be more convenient in this case than calling getDict and
 // modifying it for each key. The pdf-create example does this.
 QPDF_DLL
 void replaceDict(QPDFObjectHandle);

 // Replace this stream's stream data with the given data buffer,
 // and replace the /Filter and /DecodeParms keys in the stream
 // dictionary with the given values. (If either value is empty,
 // the corresponding key is removed.) The stream's /Length key is
 // replaced with the length of the data buffer. The stream is
 // interpreted as if the data read from the file, after any
 // decryption filters have been applied, is as presented.
 QPDF_DLL
 void replaceStreamData(PointerHolder<Buffer> data,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);

 // Replace the stream's stream data with the given string.
 // This method will create a copy of the data rather than using
 // the user-provided buffer as in the PointerHolder<Buffer> version
 // of replaceStreamData.
 QPDF_DLL
 void replaceStreamData(std::string const& data,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);

 // As above, replace this stream's stream data. Instead of
 // directly providing a buffer with the stream data, call the
 // given provider's provideStreamData method. See comments on the
 // StreamDataProvider class (defined above) for details on the
 // method. The data must be consistent with filter and
 // decode_parms as provided. Although it is more complex to use
 // this form of replaceStreamData than the one that takes a
 // buffer, it makes it possible to avoid allocating memory for the
 // stream data. Example programs are provided that use both forms
 // of replaceStreamData.

 // Note about stream length: for any given stream, the provider
 // must provide the same amount of data each time it is called.
 // This is critical for making linearization work properly.
 // Versions of qpdf before 3.0.0 required a length to be specified
 // here. Starting with version 3.0.0, this is no longer necessary
 // (or permitted). The first time the stream data provider is
 // invoked for a given stream, the actual length is stored.
 // Subsequent times, it is enforced that the length be the same as
 // the first time.

 // If you have gotten a compile error here while building code
 // that worked with older versions of qpdf, just omit the length
 // parameter. You can also simplify your code by not having to
 // compute the length in advance.
 QPDF_DLL
 void replaceStreamData(PointerHolder<StreamDataProvider> provider,
			 QPDFObjectHandle const& filter,
			 QPDFObjectHandle const& decode_parms);

 // Access object ID and generation. For direct objects, return
 // object ID 0.

 // NOTE: Be careful about calling getObjectID() and
 // getGeneration() directly as this can lead to the pattern of
 // depending on object ID or generation without the other. In
 // general, when keeping track of object IDs, it's better to use
 // QPDFObjGen instead.

 QPDF_DLL
 QPDFObjGen getObjGen() const;
 QPDF_DLL
 int getObjectID() const;
 QPDF_DLL
 int getGeneration() const;

 QPDF_DLL
 std::string unparse();
 QPDF_DLL
 std::string unparseResolved();

 // Convenience routines for commonly performed functions

 // Throws an exception if this is not a Page object. Returns an
 // empty map if there are no images or no resources. This
 // function does not presently support inherited resources. If
 // this is a significant concern, call
 // pushInheritedAttributesToPage() on the QPDF object that owns
 // this page. See comment in the source for details. Return
 // value is a map from XObject name to the image object, which is
 // always a stream.
 QPDF_DLL
 std::map<std::string, QPDFObjectHandle> getPageImages();

 // Returns a vector of stream objects representing the content
 // streams for the given page. This routine allows the caller to
 // not care whether there are one or more than one content streams
 // for a page. Throws an exception if this is not a Page object.
 QPDF_DLL
 std::vector<QPDFObjectHandle> getPageContents();

 // Add the given object as a new content stream for this page. If
 // parameter 'first' is true, add to the beginning. Otherwise,
 // add to the end. This routine automatically converts the page
 // contents to an array if it is a scalar, allowing the caller not
 // to care what the initial structure is. Throws an exception if
 // this is not a Page object.
 QPDF_DLL
 void addPageContents(QPDFObjectHandle contents, bool first);

 // Initializers for objects. This Factory class gives the QPDF
 // class specific permission to call factory methods without
 // making it a friend of the whole QPDFObjectHandle class.
 class Factory
 {
	friend class QPDF;
 private:
	static QPDFObjectHandle newIndirect(QPDF* qpdf,
					 int objid, int generation)
	{
	 return QPDFObjectHandle::newIndirect(qpdf, objid, generation);
	}
	// object must be dictionary object
	static QPDFObjectHandle newStream(
	 QPDF* qpdf, int objid, int generation,
	 QPDFObjectHandle stream_dict, qpdf_offset_t offset, size_t length)
	{
	 return QPDFObjectHandle::newStream(
		qpdf, objid, generation, stream_dict, offset, length);
	}
 };
 friend class Factory;

 // Accessor for raw underlying object -- only QPDF is allowed to
 // call this.
 class ObjAccessor
 {
	friend class QPDF;
 private:
	static PointerHolder<QPDFObject> getObject(QPDFObjectHandle& o)
	{
	 o.dereference();
	 return o.obj;
	}
 };
 friend class ObjAccessor;

 // Provide access to specific classes for recursive
 // reverseResolved().
 class ReleaseResolver
 {
	friend class QPDF_Dictionary;
	friend class QPDF_Array;
 private:
	static void releaseResolved(QPDFObjectHandle& o)
	{
	 o.releaseResolved();
	}
 };
 friend class ReleaseResolver;

 // Convenience routine: Throws if the assumption is violated.
 QPDF_DLL
 void assertInitialized() const;

 QPDF_DLL
 void assertNull();
 QPDF_DLL
 void assertBool();
 QPDF_DLL
 void assertInteger();
 QPDF_DLL
 void assertReal();
 QPDF_DLL
 void assertName();
 QPDF_DLL
 void assertString();
 QPDF_DLL
 void assertOperator();
 QPDF_DLL
 void assertInlineImage();
 QPDF_DLL
 void assertArray();
 QPDF_DLL
 void assertDictionary();
 QPDF_DLL
 void assertStream();
 QPDF_DLL
 void assertReserved();

 QPDF_DLL
 void assertIndirect();
 QPDF_DLL
 void assertScalar();
 QPDF_DLL
 void assertNumber();

 QPDF_DLL
 bool isPageObject();
 QPDF_DLL
 bool isPagesObject();
 QPDF_DLL
 void assertPageObject();

 private:
 QPDFObjectHandle(QPDF*, int objid, int generation);
 QPDFObjectHandle(QPDFObject*);

 // Private object factory methods
 static QPDFObjectHandle newIndirect(QPDF*, int objid, int generation);
 static QPDFObjectHandle newStream(
	QPDF* qpdf, int objid, int generation,
	QPDFObjectHandle stream_dict, qpdf_offset_t offset, size_t length);

 void assertType(char const* type_name, bool istype) const;
 void dereference();
 void makeDirectInternal(std::set<int>& visited);
 void releaseResolved();
 static QPDFObjectHandle parseInternal(
 PointerHolder<InputSource> input,
 std::string const& object_description,
 QPDFTokenizer& tokenizer, bool& empty,
 StringDecrypter* decrypter, QPDF* context,
 bool in_array, bool in_dictionary,
 bool content_stream);
 static void parseContentStream_internal(
 QPDFObjectHandle stream, ParserCallbacks* callbacks);

 bool initialized;

 QPDF* qpdf;			// 0 for direct object
 int objid;			// 0 for direct object
 int generation;
 PointerHolder<QPDFObject> obj;
 bool reserved;
};

#endif // __QPDFOBJECTHANDLE_HH__

@unixroot/usr/include/qpdf/QPDFObjGen.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDFOBJGEN_HH__
#define __QPDFOBJGEN_HH__

#include <qpdf/DLL.h>

// This class represents an object ID and generation pair. It is
// suitable to use as a key in a map or set.

class QPDFObjGen
{
 public:
 QPDF_DLL
 QPDFObjGen();
 QPDF_DLL
 QPDFObjGen(int obj, int gen);
 QPDF_DLL
 bool operator<(QPDFObjGen const&) const;
 QPDF_DLL
 bool operator==(QPDFObjGen const&) const;
 QPDF_DLL
 int getObj() const;
 QPDF_DLL
 int getGen() const;

 private:
 int obj;
 int gen;
};

#endif // __QPDFOBJGEN_HH__

@unixroot/usr/include/qpdf/QPDFTokenizer.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDFTOKENIZER_HH__
#define __QPDFTOKENIZER_HH__

#include <qpdf/DLL.h>

#include <qpdf/InputSource.hh>
#include <qpdf/PointerHolder.hh>
#include <string>
#include <stdio.h>

class QPDFTokenizer
{
 public:
 // Token type tt_eof is only returned of allowEOF() is called on
 // the tokenizer. tt_eof was introduced in QPDF version 4.1.
 enum token_type_e
 {
	tt_bad,
	tt_array_close,
	tt_array_open,
	tt_brace_close,
	tt_brace_open,
	tt_dict_close,
	tt_dict_open,
	tt_integer,
	tt_name,
	tt_real,
	tt_string,
	tt_null,
	tt_bool,
	tt_word,
 tt_eof,
 };

 class Token
 {
 public:
	Token() : type(tt_bad) {}

	Token(token_type_e type, std::string const& value) :
	 type(type),
	 value(value)
	{
	}

	Token(token_type_e type, std::string const& value,
	 std::string raw_value, std::string error_message) :
	 type(type),
	 value(value),
	 raw_value(raw_value),
	 error_message(error_message)
	{
	}
	token_type_e getType() const
	{
	 return this->type;
	}
	std::string const& getValue() const
	{
	 return this->value;
	}
	std::string const& getRawValue() const
	{
	 return this->raw_value;
	}
	std::string const& getErrorMessage() const
	{
	 return this->error_message;
	}
	bool operator==(Token const& rhs)
	{
	 // Ignore fields other than type and value
	 return ((this->type != tt_bad) &&
		 (this->type == rhs.type) &&
		 (this->value == rhs.value));
	}

 private:
	token_type_e type;
	std::string value;
	std::string raw_value;
	std::string error_message;
 };

 QPDF_DLL
 QPDFTokenizer();

 // PDF files with version < 1.2 allowed the pound character
 // anywhere in a name. Starting with version 1.2, the pound
 // character was allowed only when followed by two hexadecimal
 // digits. This method should be called when parsing a PDF file
 // whose version is older than 1.2.
 QPDF_DLL
 void allowPoundAnywhereInName();

 // If called, treat EOF as a separate token type instead of an
 // error. This was introduced in QPDF 4.1 to facilitate
 // tokenizing content streams.
 QPDF_DLL
 void allowEOF();

 // Mode of operation:

 // Keep presenting characters and calling getToken() until
 // getToken() returns true. When it does, be sure to check
 // unread_ch and to unread ch if it is true.

 // It these are called when a token is available, an exception
 // will be thrown.
 QPDF_DLL
 void presentCharacter(char ch);
 QPDF_DLL
 void presentEOF();

 // If a token is available, return true and initialize token with
 // the token, unread_char with whether or not we have to unread
 // the last character, and if unread_char, ch with the character
 // to unread.
 QPDF_DLL
 bool getToken(Token& token, bool& unread_char, char& ch);

 // This function returns true of the current character is between
 // tokens (i.e., white space that is not part of a string) or is
 // part of a comment. A tokenizing filter can call this to
 // determine whether to output the character.
 QPDF_DLL
 bool betweenTokens();

 // Read a token from an input source. Context describes the
 // context in which the token is being read and is used in the
 // exception thrown if there is an error.
 QPDF_DLL
 Token readToken(PointerHolder<InputSource> input,
 std::string const& context);

 private:
 void reset();
 void resolveLiteral();

 // Lexer state
 enum { st_top, st_in_comment, st_in_string, st_lt, st_gt,
	 st_literal, st_in_hexstring, st_token_ready } state;

 bool pound_special_in_name;
 bool allow_eof;

 // Current token accumulation
 token_type_e type;
 std::string val;
 std::string raw_val;
 std::string error_message;
 bool unread_char;
 char char_to_unread;

 // State for strings
 int string_depth;
 bool string_ignoring_newline;
 char bs_num_register[4];
 bool last_char_was_bs;
};

#endif // __QPDFTOKENIZER_HH__

@unixroot/usr/include/qpdf/QPDFWriter.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

// This class implements a simple writer for saving QPDF objects to
// new PDF files. See comments through the header file for additional
// details.

#ifndef __QPDFWRITER_HH__
#define __QPDFWRITER_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

#include <stdio.h>
#include <string>
#include <list>
#include <vector>
#include <set>
#include <map>

#include <qpdf/Constants.h>

#include <qpdf/QPDFObjGen.hh>
#include <qpdf/QPDFXRefEntry.hh>

#include <qpdf/Pl_Buffer.hh>
#include <qpdf/PointerHolder.hh>
#include <qpdf/Pipeline.hh>
#include <qpdf/Buffer.hh>

class QPDF;
class QPDFObjectHandle;
class Pl_Count;
class Pl_MD5;

class QPDFWriter
{
 public:
 // Construct a QPDFWriter object without specifying output. You
 // must call one of the output setting routines defined below.
 QPDF_DLL
 QPDFWriter(QPDF& pdf);

 // Create a QPDFWriter object that writes its output to a file or
 // to stdout. This is equivalent to using the previous
 // constructor and then calling setOutputFilename(). See
 // setOutputFilename() for details.
 QPDF_DLL
 QPDFWriter(QPDF& pdf, char const* filename);

 // Create a QPDFWriter object that writes its output to an already
 // open FILE*. This is equivalent to calling the first
 // constructor and then calling setOutputFile(). See
 // setOutputFile() for details.
 QPDF_DLL
 QPDFWriter(QPDF& pdf, char const* description, FILE* file, bool close_file);

 QPDF_DLL
 ~QPDFWriter();

 // Setting Output. Output may be set only one time. If you don't
 // use the filename version of the QPDFWriter constructor, you
 // must call exactly one of these methods.

 // Passing null as filename means write to stdout. QPDFWriter
 // will create a zero-length output file upon construction. If
 // write fails, the empty or partially written file will not be
 // deleted. This is by design: sometimes the partial file may be
 // useful for tracking down problems. If your application doesn't
 // want the partially written file to be left behind, you should
 // delete it the eventual call to write fails.
 QPDF_DLL
 void setOutputFilename(char const* filename);

 // Write to the given FILE*, which must be opened by the caller.
 // If close_file is true, QPDFWriter will close the file.
 // Otherwise, the caller must close the file. The file does not
 // need to be seekable; it will be written to in a single pass.
 // It must be open in binary mode.
 QPDF_DLL
 void setOutputFile(char const* description, FILE* file, bool close_file);

 // Indicate that QPDFWriter should create a memory buffer to
 // contain the final PDF file. Obtain the memory by calling
 // getBuffer().
 QPDF_DLL
 void setOutputMemory();

 // Return the buffer object containing the PDF file. If
 // setOutputMemory() has been called, this method may be called
 // exactly one time after write() has returned. The caller is
 // responsible for deleting the buffer when done.
 QPDF_DLL
 Buffer* getBuffer();

 // Supply your own pipeline object. Output will be written to
 // this pipeline, and QPDFWriter will call finish() on the
 // pipeline. It is the caller's responsibility to manage the
 // memory for the pipeline. The pipeline is never deleted by
 // QPDFWriter, which makes it possible for you to call additional
 // methods on the pipeline after the writing is finished.
 QPDF_DLL
 void setOutputPipeline(Pipeline*);

 // Setting Parameters

 // Set the value of object stream mode. In disable mode, we never
 // generate any object streams. In preserve mode, we preserve
 // object stream structure from the original file. In generate
 // mode, we generate our own object streams. In all cases, we
 // generate a conventional cross-reference table if there are no
 // object streams and a cross-reference stream if there are object
 // streams. The default is o_preserve.
 QPDF_DLL
 void setObjectStreamMode(qpdf_object_stream_e);

 // Set value of stream data mode. In uncompress mode, we attempt
 // to uncompress any stream that we can. In preserve mode, we
 // preserve any filtering applied to streams. In compress mode,
 // if we can apply all filters and the stream is not already
 // optimally compressed, recompress the stream.
 QPDF_DLL
 void setStreamDataMode(qpdf_stream_data_e);

 // Set value of content stream normalization. The default is
 // "false". If true, we attempt to normalize newlines inside of
 // content streams. Some constructs such as inline images may
 // thwart our efforts. There may be some cases where this can
 // damage the content stream. This flag should be used only for
 // debugging and experimenting with PDF content streams. Never
 // use it for production files.
 QPDF_DLL
 void setContentNormalization(bool);

 // Set QDF mode. QDF mode causes special "pretty printing" of
 // PDF objects, adds comments for easier perusing of files.
 // Resulting PDF files can be edited in a text editor and then run
 // through fix-qdf to update cross reference tables and stream
 // lengths.
 QPDF_DLL
 void setQDFMode(bool);

 // Set the minimum PDF version. If the PDF version of the input
 // file (or previously set minimum version) is less than the
 // version passed to this method, the PDF version of the output
 // file will be set to this value. If the original PDF file's
 // version or previously set minimum version is already this
 // version or later, the original file's version will be used.
 // QPDFWriter automatically sets the minimum version to 1.4 when
 // R3 encryption parameters are used, and to 1.5 when object
 // streams are used.
 QPDF_DLL
 void setMinimumPDFVersion(std::string const&);
 QPDF_DLL
 void setMinimumPDFVersion(std::string const&, int extension_level);

 // Force the PDF version of the output file to be a given version.
 // Use of this function may create PDF files that will not work
 // properly with older PDF viewers. When a PDF version is set
 // using this function, qpdf will use this version even if the
 // file contains features that are not supported in that version
 // of PDF. In other words, you should only use this function if
 // you are sure the PDF file in question has no features of newer
 // versions of PDF or if you are willing to create files that old
 // viewers may try to open but not be able to properly interpret.
 // If any encryption has been applied to the document either
 // explicitly or by preserving the encryption of the source
 // document, forcing the PDF version to a value too low to support
 // that type of encryption will explicitly disable decryption.
 // Additionally, forcing to a version below 1.5 will disable
 // object streams.
 QPDF_DLL
 void forcePDFVersion(std::string const&);
 QPDF_DLL
 void forcePDFVersion(std::string const&, int extension_level);

 // Provide additional text to insert in the PDF file somewhere
 // near the beginning of the file. This can be used to add
 // comments to the beginning of a PDF file, for example, if those
 // comments are to be consumed by some other application. No
 // checks are performed to ensure that the text inserted here is
 // valid PDF. If you want to insert multiline comments, you will
 // need to include \n in the string yourself and start each line
 // with %. An extra newline will be appended if one is not
 // already present at the end of your text.
 QPDF_DLL
 void setExtraHeaderText(std::string const&);

 // Causes a deterministic /ID value to be generated. When this is
 // set, the current time and output file name are not used as part
 // of /ID generation. Instead, a digest of all significant parts
 // of the output file's contents is included in the /ID
 // calculation. Use of a deterministic /ID can be handy when it is
 // desirable for a repeat of the same qpdf operation on the same
 // inputs being written to the same outputs with the same
 // parameters to generate exactly the same results. This feature
 // is incompatible with encrypted files because, for encrypted
 // files, the /ID is generated before any part of the file is
 // written since it is an input to the encryption process.
 QPDF_DLL
 void setDeterministicID(bool);

 // Cause a static /ID value to be generated. Use only in test
 // suites. See also setDeterministicID.
 QPDF_DLL
 void setStaticID(bool);

 // Use a fixed initialization vector for AES-CBC encryption. This
 // is not secure. It should be used only in test suites for
 // creating predictable encrypted output.
 QPDF_DLL
 void setStaticAesIV(bool);

 // Suppress inclusion of comments indicating original object IDs
 // when writing QDF files. This can also be useful for testing,
 // particularly when using comparison of two qdf files to
 // determine whether two PDF files have identical content.
 QPDF_DLL
 void setSuppressOriginalObjectIDs(bool);

 // Preserve encryption. The default is true unless prefilering,
 // content normalization, or qdf mode has been selected in which
 // case encryption is never preserved. Encryption is also not
 // preserved if we explicitly set encryption parameters.
 QPDF_DLL
 void setPreserveEncryption(bool);

 // Copy encryption parameters from another QPDF object. If you
 // want to copy encryption from the object you are writing, call
 // setPreserveEncryption(true) instead.
 QPDF_DLL
 void copyEncryptionParameters(QPDF&);

 // Set up for encrypted output. User and owner password both must
 // be specified. Either or both may be the empty string. Note
 // that qpdf does not apply any special treatment to the empty
 // string, which makes it possible to create encrypted files with
 // empty owner passwords and non-empty user passwords or with the
 // same password for both user and owner. Some PDF reading
 // products don't handle such files very well. Enabling
 // encryption disables stream prefiltering and content
 // normalization. Note that setting R2 encryption parameters sets
 // the PDF version to at least 1.3, setting R3 encryption
 // parameters pushes the PDF version number to at least 1.4,
 // setting R4 parameters pushes the version to at least 1.5, or if
 // AES is used, 1.6, and setting R5 or R6 parameters pushes the
 // version to at least 1.7 with extension level 3.
 QPDF_DLL
 void setR2EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_print, bool allow_modify,
	bool allow_extract, bool allow_annotate);
 QPDF_DLL
 void setR3EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify);
 QPDF_DLL
 void setR4EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify,
	bool encrypt_metadata, bool use_aes);
 // R5 is deprecated. Do not use it for production use. Writing
 // R5 is supported by qpdf primarily to generate test files for
 // applications that may need to test R5 support.
 QPDF_DLL
 void setR5EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify,
	bool encrypt_metadata);
 QPDF_DLL
 void setR6EncryptionParameters(
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify,
	bool encrypt_metadata_aes);

 // Create linearized output. Disables qdf mode, content
 // normalization, and stream prefiltering.
 QPDF_DLL
 void setLinearization(bool);

 QPDF_DLL
 void write();

 private:
 // flags used by unparseObject
 static int const f_stream = 	1 << 0;
 static int const f_filtered =	1 << 1;
 static int const f_in_ostream = 1 << 2;

 enum trailer_e { t_normal, t_lin_first, t_lin_second };

 void init();
 int bytesNeeded(unsigned long long n);
 void writeBinary(unsigned long long val, unsigned int bytes);
 void writeString(std::string const& str);
 void writeBuffer(PointerHolder<Buffer>&);
 void writeStringQDF(std::string const& str);
 void writeStringNoQDF(std::string const& str);
 void writePad(int nspaces);
 void assignCompressedObjectNumbers(QPDFObjGen const& og);
 void enqueueObject(QPDFObjectHandle object);
 void writeObjectStreamOffsets(
 std::vector<qpdf_offset_t>& offsets, int first_obj);
 void writeObjectStream(QPDFObjectHandle object);
 void writeObject(QPDFObjectHandle object, int object_stream_index = -1);
 void writeTrailer(trailer_e which, int size,
		 bool xref_stream, qpdf_offset_t prev,
 int linearization_pass);
 void unparseObject(QPDFObjectHandle object, int level,
		 unsigned int flags);
 void unparseObject(QPDFObjectHandle object, int level,
		 unsigned int flags,
		 // for stream dictionaries
		 size_t stream_length, bool compress);
 void unparseChild(QPDFObjectHandle child, int level, int flags);
 void initializeSpecialStreams();
 void preserveObjectStreams();
 void generateObjectStreams();
 void generateID();
 void interpretR3EncryptionParameters(
	std::set<int>& bits_to_clear,
	char const* user_password, char const* owner_password,
	bool allow_accessibility, bool allow_extract,
	qpdf_r3_print_e print, qpdf_r3_modify_e modify);
 void disableIncompatibleEncryption(int major, int minor,
 int extension_level);
 void parseVersion(std::string const& version, int& major, int& minor) const;
 int compareVersions(int major1, int minor1, int major2, int minor2) const;
 void setEncryptionParameters(
	char const* user_password, char const* owner_password,
	int V, int R, int key_len, std::set<int>& bits_to_clear);
 void setEncryptionParametersInternal(
	int V, int R, int key_len, long P,
	std::string const& O, std::string const& U,
	std::string const& OE, std::string const& UE, std::string const& Perms,
	std::string const& id1, std::string const& user_password,
 std::string const& encryption_key);
 void setDataKey(int objid);
 int openObject(int objid = 0);
 void closeObject(int objid);
 QPDFObjectHandle getTrimmedTrailer();
 void prepareFileForWrite();
 void writeStandard();
 void writeLinearized();
 void enqueuePart(std::vector<QPDFObjectHandle>& part);
 void writeEncryptionDictionary();
 void writeHeader();
 void writeHintStream(int hint_id);
 qpdf_offset_t writeXRefTable(
 trailer_e which, int first, int last, int size);
 qpdf_offset_t writeXRefTable(
 trailer_e which, int first, int last, int size,
 // for linearization
 qpdf_offset_t prev,
 bool suppress_offsets,
 int hint_id,
 qpdf_offset_t hint_offset,
 qpdf_offset_t hint_length,
 int linearization_pass);
 qpdf_offset_t writeXRefStream(
 int objid, int max_id, qpdf_offset_t max_offset,
 trailer_e which, int first, int last, int size);
 qpdf_offset_t writeXRefStream(
 int objid, int max_id, qpdf_offset_t max_offset,
 trailer_e which, int first, int last, int size,
 // for linearization
 qpdf_offset_t prev,
 int hint_id,
 qpdf_offset_t hint_offset,
 qpdf_offset_t hint_length,
 bool skip_compression,
 int linearization_pass);
 int calculateXrefStreamPadding(int xref_bytes);

 // When filtering subsections, push additional pipelines to the
 // stack. When ready to switch, activate the pipeline stack.
 // Pipelines passed to pushPipeline are deleted when
 // clearPipelineStack is called.
 Pipeline* pushPipeline(Pipeline*);
 void activatePipelineStack();
 void initializePipelineStack(Pipeline *);

 // Calls finish on the current pipeline and pops the pipeline
 // stack until the top of stack is a previous active top of stack,
 // and restores the pipeline to that point. Deletes any pipelines
 // that it pops. If the bp argument is non-null and any of the
 // stack items are of type Pl_Buffer, the buffer is retrieved.
 void popPipelineStack(PointerHolder<Buffer>* bp = 0);

 void adjustAESStreamLength(size_t& length);
 void pushEncryptionFilter();
 void pushDiscardFilter();
 void pushMD5Pipeline();
 void computeDeterministicIDData();

 void discardGeneration(std::map<QPDFObjGen, int> const& in,
 std::map<int, int>& out);

 QPDF& pdf;
 char const* filename;
 FILE* file;
 bool close_file;
 Pl_Buffer* buffer_pipeline;
 Buffer* output_buffer;
 bool normalize_content_set;
 bool normalize_content;
 bool stream_data_mode_set;
 qpdf_stream_data_e stream_data_mode;
 bool qdf_mode;
 bool static_id;
 bool suppress_original_object_ids;
 bool direct_stream_lengths;
 bool encrypted;
 bool preserve_encryption;
 bool linearized;
 qpdf_object_stream_e object_stream_mode;
 std::string encryption_key;
 bool encrypt_metadata;
 bool encrypt_use_aes;
 std::map<std::string, std::string> encryption_dictionary;
 int encryption_V;
 int encryption_R;

 std::string id1;		// for /ID key of
 std::string id2;		// trailer dictionary
 std::string final_pdf_version;
 int final_extension_level;
 std::string min_pdf_version;
 int min_extension_level;
 std::string forced_pdf_version;
 int forced_extension_level;
 std::string extra_header_text;
 int encryption_dict_objid;
 std::string cur_data_key;
 std::list<PointerHolder<Pipeline> > to_delete;
 Pl_Count* pipeline;
 std::list<QPDFObjectHandle> object_queue;
 std::map<QPDFObjGen, int> obj_renumber;
 std::map<int, QPDFXRefEntry> xref;
 std::map<int, qpdf_offset_t> lengths;
 int next_objid;
 int cur_stream_length_id;
 size_t cur_stream_length;
 bool added_newline;
 int max_ostream_index;
 std::set<QPDFObjGen> normalized_streams;
 std::map<QPDFObjGen, int> page_object_to_seq;
 std::map<QPDFObjGen, int> contents_to_page_seq;
 std::map<QPDFObjGen, int> object_to_object_stream;
 std::map<int, std::set<QPDFObjGen> > object_stream_to_objects;
 std::list<Pipeline*> pipeline_stack;
 bool deterministic_id;
 Pl_MD5* md5_pipeline;
 std::string deterministic_id_data;

 // For linearization only
 std::map<int, int> obj_renumber_no_gen;
 std::map<int, int> object_to_object_stream_no_gen;
};

#endif // __QPDFWRITER_HH__

@unixroot/usr/include/qpdf/QPDFXRefEntry.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QPDFXREFENTRY_HH__
#define __QPDFXREFENTRY_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>

class QPDFXRefEntry
{
 public:
 // Type constants are from the PDF spec section
 // "Cross-Reference Streams":
 // 0 = free entry; not used
 // 1 = "uncompressed"; field 1 = offset
 // 2 = "compressed"; field 1 = object stream number, field 2 = index

 QPDF_DLL
 QPDFXRefEntry();
 QPDF_DLL
 QPDFXRefEntry(int type, qpdf_offset_t field1, int field2);

 QPDF_DLL
 int getType() const;
 QPDF_DLL
 qpdf_offset_t getOffset() const; // only for type 1
 QPDF_DLL
 int getObjStreamNumber() const; // only for type 2
 QPDF_DLL
 int getObjStreamIndex() const;	// only for type 2

 private:
 int type;
 qpdf_offset_t field1;
 int field2;
};

#endif // __QPDFXREFENTRY_HH__

@unixroot/usr/include/qpdf/QTC.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QTC_HH__
#define __QTC_HH__

#include <qpdf/DLL.h>

namespace QTC
{
 QPDF_DLL
 void TC(char const* const scope, char const* const ccase, int n = 0);
};

#endif // __QTC_HH__

@unixroot/usr/include/qpdf/QUtil.hh
// Copyright (c) 2005-2015 Jay Berkenbilt
//
// This file is part of qpdf. This software may be distributed under
// the terms of version 2 of the Artistic License which may be found
// in the source distribution. It is provided "as is" without express
// or implied warranty.

#ifndef __QUTIL_HH__
#define __QUTIL_HH__

#include <qpdf/DLL.h>
#include <qpdf/Types.h>
#include <string>
#include <list>
#include <stdexcept>
#include <stdio.h>
#include <time.h>

class RandomDataProvider;

namespace QUtil
{
 // This is a collection of useful utility functions that don't
 // really go anywhere else.
 QPDF_DLL
 std::string int_to_string(long long, int length = 0);
 QPDF_DLL
 std::string int_to_string_base(long long, int base, int length = 0);
 QPDF_DLL
 std::string double_to_string(double, int decimal_places = 0);

 QPDF_DLL
 long long string_to_ll(char const* str);

 // Pipeline's write method wants unsigned char*, but we often have
 // some other type of string. These methods do combinations of
 // const_cast and reinterpret_cast to give us an unsigned char*.
 // They should only be used when it is known that it is safe.
 // None of the pipelines in qpdf modify the data passed to them,
 // so within qpdf, it should always be safe.
 QPDF_DLL
 unsigned char* unsigned_char_pointer(std::string const& str);
 QPDF_DLL
 unsigned char* unsigned_char_pointer(char const* str);

 // Throw std::runtime_error with a string formed by appending to
 // "description: " the standard string corresponding to the
 // current value of errno.
 QPDF_DLL
 void throw_system_error(std::string const& description);

 // The status argument is assumed to be the return value of a
 // standard library call that sets errno when it fails. If status
 // is -1, convert the current value of errno to a
 // std::runtime_error that includes the standard error string.
 // Otherwise, return status.
 QPDF_DLL
 int os_wrapper(std::string const& description, int status);

 // If the open fails, throws std::runtime_error. Otherwise, the
 // FILE* is returned.
 QPDF_DLL
 FILE* safe_fopen(char const* filename, char const* mode);

 // The FILE* argument is assumed to be the return of fopen. If
 // null, throw std::runtime_error. Otherwise, return the FILE*
 // argument.
 QPDF_DLL
 FILE* fopen_wrapper(std::string const&, FILE*);

 // Wrap around off_t versions of fseek and ftell if available
 QPDF_DLL
 int seek(FILE* stream, qpdf_offset_t offset, int whence);
 QPDF_DLL
 qpdf_offset_t tell(FILE* stream);

 QPDF_DLL
 char* copy_string(std::string const&);

 // Returns lower-case hex-encoded version of the string, treating
 // each character in the input string as unsigned. The output
 // string will be twice as long as the input string.
 QPDF_DLL
 std::string hex_encode(std::string const&);

 // Set stdin, stdout to binary mode
 QPDF_DLL
 void binary_stdout();
 QPDF_DLL
 void binary_stdin();
 // Set stdout to line buffered
 QPDF_DLL
 void setLineBuf(FILE*);

 // May modify argv0
 QPDF_DLL
 char* getWhoami(char* argv0);

 // Get the value of an environment variable in a portable fashion.
 // Returns true iff the variable is defined. If `value' is
 // non-null, initializes it with the value of the variable.
 QPDF_DLL
 bool get_env(std::string const& var, std::string* value = 0);

 QPDF_DLL
 time_t get_current_time();

 // Return a string containing the byte representation of the UTF-8
 // encoding for the unicode value passed in.
 QPDF_DLL
 std::string toUTF8(unsigned long uval);

 // If secure random number generation is supported on your
 // platform and qpdf was not compiled with insecure random number
 // generation, this returns a cryptographically secure random
 // number. Otherwise it falls back to random from stdlib and
 // calls srandom automatically the first time it is called.
 QPDF_DLL
 long random();

 // Wrapper around srandom from stdlib. Seeds the standard library
 // weak random number generator, which is not used if secure
 // random number generation is being used. You never need to call
 // this method as it is called automatically if needed.
 QPDF_DLL
 void srandom(unsigned int seed);

 // Initialize a buffer with random bytes. By default, qpdf tries
 // to use a secure random number source. It can be configured at
 // compile time to use an insecure random number source (from
 // stdlib). You can also call setRandomDataProvider with a
 // RandomDataProvider, in which case this method will get its
 // random bytes from that.

 QPDF_DLL
 void initializeWithRandomBytes(unsigned char* data, size_t len);

 // Supply a random data provider. If not supplied, depending on
 // compile time options, qpdf will either use the operating
 // system's secure random number source or an insecure random
 // source from stdlib. The caller is responsible for managing the
 // memory for the RandomDataProvider. This method modifies a
 // static variable. If you are providing your own random data
 // provider, you should call this at the beginning of your program
 // before creating any QPDF objects. Passing a null to this
 // method will reset the library back to whichever of the built-in
 // random data handlers is appropriate based on how qpdf was
 // compiled.
 QPDF_DLL
 void setRandomDataProvider(RandomDataProvider*);

 // This returns the random data provider that would be used the
 // next time qpdf needs random data. It will never return null.
 // If no random data provider has been provided and the library
 // was not compiled with any random data provider available, an
 // exception will be thrown.
 QPDF_DLL
 RandomDataProvider* getRandomDataProvider();
};

#endif // __QUTIL_HH__

@unixroot/usr/include/qpdf/RandomDataProvider.hh
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __RANDOMDATAPROVIDER_HH__
#define __RANDOMDATAPROVIDER_HH__

#include <string.h> // for size_t

class RandomDataProvider
{
 public:
 virtual ~RandomDataProvider()
 {
 }
 virtual void provideRandomData(unsigned char* data, size_t len) = 0;

 protected:
 RandomDataProvider()
 {
 }

 private:
 RandomDataProvider(RandomDataProvider const&);
 RandomDataProvider& operator=(RandomDataProvider const&);
};

#endif // __RANDOMDATAPROVIDER_HH__

@unixroot/usr/include/qpdf/Types.h
/* Copyright (c) 2005-2015 Jay Berkenbilt
 *
 * This file is part of qpdf. This software may be distributed under
 * the terms of version 2 of the Artistic License which may be found
 * in the source distribution. It is provided "as is" without express
 * or implied warranty.
 */

#ifndef __QPDFTYPES_H__
#define __QPDFTYPES_H__

/* Provide an offset type that should be as big as off_t on just about
 * any system. If your compiler doesn't support C99 (or at least the
 * "long long" type), then you may have to modify this definition.
 */

typedef long long int qpdf_offset_t;

#endif /* __QPDFTYPES_H__ */

@unixroot/usr/lib/pkgconfig/libqpdf.pc
prefix=/@unixroot/usr
exec_prefix=/@unixroot/usr
libdir=/@unixroot/usr/lib
includedir=/@unixroot/usr/include

Name: libqpdf
Description: PDF transformation library
Version: 6.0.0
Requires.private: zlib, libpcre
Libs: -L${libdir} -lqpdf
Cflags: -I${includedir}

@unixroot/usr/lib/qpdf17.dbg

@unixroot/usr/lib/qpdf17.dll

@unixroot/usr/lib/qpdf17_dll.a

IMPORT#1#ca16d7c

IMPORT#2#329d764

IMPORT#3#885ff5a

IMPORT#4#2332986

IMPORT#5#b405136

IMPORT#6#88caec7

IMPORT#7#88cae07

IMPORT#8#33347a4

IMPORT#9#6a95836

IMPORT#10#6b03b1

IMPORT#11#b6b52b

IMPORT#12#9a4673

IMPORT#13#6a18ce

IMPORT#14#7018ce

IMPORT#15#1a4673

IMPORT#16#6a9583

IMPORT#17#6b03b1

IMPORT#18#b40513

IMPORT#19#d2bb29

IMPORT#20#d27b29

IMPORT#21#ba2ca9

IMPORT#22#32ecfe

IMPORT#23#c78314

IMPORT#24#c78314

IMPORT#25#c78314

IMPORT#26#c78314

IMPORT#27#78314b

IMPORT#28#783148

IMPORT#29#30c59b

IMPORT#30#30c7cf

IMPORT#31#c78315

IMPORT#32#c78315

IMPORT#33#30ce70

IMPORT#34#e0c52c

IMPORT#35#e0c520

IMPORT#36#e0c688

IMPORT#37#30c43c

IMPORT#38#fc6310

IMPORT#39#fc6310

IMPORT#40#883445

IMPORT#41#ce20a9

IMPORT#42#e20979

IMPORT#43#206127

IMPORT#44#7ec143

IMPORT#45#e20b25

IMPORT#46#c3389a

IMPORT#47#c4c338

IMPORT#48#c3389a

IMPORT#49#c3389a

IMPORT#50#3882de

IMPORT#51#b0640c

IMPORT#52#80640c

IMPORT#53#89bb06

IMPORT#54#89b806

IMPORT#55#dc0338

IMPORT#56#b40338

IMPORT#57#c4c338

IMPORT#58#c4c338

IMPORT#59#883445

IMPORT#60#ce20a9

IMPORT#61#e20979

IMPORT#62#7ec143

IMPORT#63#206127

IMPORT#64#3389b8

IMPORT#65#f40338

IMPORT#66#3389bb

IMPORT#67#8837cf

IMPORT#68#86d954

IMPORT#69#194adf

IMPORT#70#3389a4

IMPORT#71#3389a7

IMPORT#72#3389a6

IMPORT#73#838584

IMPORT#74#3882de

IMPORT#75#e20b25

IMPORT#76#4c70c0

IMPORT#77#f40338

IMPORT#78#f40338

IMPORT#79#4c6ac0

IMPORT#80#4bc546

IMPORT#81#44bc54

IMPORT#82#207245

IMPORT#83#b3f7f5

IMPORT#84#b3f7f5

IMPORT#85#b3f7f5

IMPORT#86#b3f7f4

IMPORT#87#7b3f7e

IMPORT#88#b3f7f4

IMPORT#89#dfb550

IMPORT#90#6507b4

IMPORT#91#2c5075

IMPORT#92#7b3f7e

IMPORT#93#7b3f7e

IMPORT#94#7b3f7e

IMPORT#95#7b3f7e

IMPORT#96#c7cfd6

IMPORT#97#fc5d0a

IMPORT#98#fcad0a

IMPORT#99#6d1702

IMPORT#100#cf9ab

IMPORT#101#1f3ff

IMPORT#102#131f2

IMPORT#103#131f2

IMPORT#104#1f3e9

IMPORT#105#5d73d

IMPORT#106#f9e3d

IMPORT#107#70d70

IMPORT#108#974f4

IMPORT#109#f3f1c

IMPORT#110#1f3ef

IMPORT#111#f3e46

IMPORT#112#daad7

IMPORT#113#4aad7

IMPORT#114#ab5c1

IMPORT#115#ab5c1

IMPORT#116#7ec14

IMPORT#117#88344

IMPORT#118#ce20a

IMPORT#119#20612

IMPORT#120#e20b2

IMPORT#121#3882d

IMPORT#122#43389

IMPORT#123#51433

IMPORT#124#e2097

IMPORT#125#43389

IMPORT#126#43389

IMPORT#127#c0338

IMPORT#128#c0338

IMPORT#129#51433

IMPORT#130#51433

IMPORT#131#42e6e

IMPORT#132#641b0

IMPORT#133#4d906

IMPORT#134#641b0

IMPORT#135#641b0

IMPORT#136#641b0

IMPORT#137#d357f

IMPORT#138#d357f

IMPORT#139#fb966

IMPORT#140#d5fda

IMPORT#141#d5fda

IMPORT#142#fbb9c

IMPORT#143#57f6b

IMPORT#144#57f68

IMPORT#145#57f82

IMPORT#146#7ee7c

IMPORT#147#4d5fe

IMPORT#148#1257b

IMPORT#149#4d906

IMPORT#150#ed84f

IMPORT#151#edc45

IMPORT#152#edc49

IMPORT#153#fb6bf

IMPORT#154#4c7d2

IMPORT#155#4c7d2

IMPORT#156#83859

IMPORT#157#838dc

IMPORT#158#1f4be

IMPORT#159#1f4be

IMPORT#160#ddfc4

IMPORT#161#1f4da

IMPORT#162#4d906

IMPORT#163#a57ec

IMPORT#164#31b32

IMPORT#165#a57e0

IMPORT#166#73295

IMPORT#167#73295

IMPORT#168#73295

IMPORT#169#94744

IMPORT#170#31a72

IMPORT#171#31cf2

IMPORT#172#7e848

IMPORT#173#687e8

IMPORT#174#7e848

IMPORT#175#7e848

IMPORT#176#6ca54

IMPORT#177#6ca54

IMPORT#178#9ea86

IMPORT#179#229be

IMPORT#180#27619

IMPORT#181#8a228

IMPORT#182#3ab6d

IMPORT#183#d90f3

IMPORT#184#849cf

IMPORT#185#49d8b

IMPORT#186#1270d

IMPORT#187#6d7e8

IMPORT#188#777e8

IMPORT#189#44eb7

IMPORT#190#b244e

IMPORT#191#44eb7

IMPORT#192#44eb7

IMPORT#193#b19b2

IMPORT#194#819b2

IMPORT#195#eb6cf

IMPORT#196#adb0d

IMPORT#197#b6d8b

IMPORT#198#b244e

IMPORT#199#b244e

IMPORT#200#8eab7

IMPORT#201#c88ea

IMPORT#202#8eab7

IMPORT#203#8eab7

IMPORT#204#b19b2

IMPORT#205#819b2

IMPORT#206#ab6cf

IMPORT#207#adb0d

IMPORT#208#b6d8b

IMPORT#209#c88ea

IMPORT#210#c88ea

IMPORT#211#4c30d

IMPORT#212#cb931

IMPORT#213#c6cb9

IMPORT#214#cb931

IMPORT#215#cb931

IMPORT#216#b19b2

IMPORT#217#819b2

IMPORT#218#c577c

IMPORT#219#fc631

IMPORT#220#30d8b

IMPORT#221#c69b9

IMPORT#222#c73b9

IMPORT#223#e4bcd

IMPORT#224#3d793

IMPORT#225#3e3d7

IMPORT#226#3d793

IMPORT#227#3d793

IMPORT#228#92e8b

IMPORT#229#b19b2

IMPORT#230#819b2

IMPORT#231#a82ed

IMPORT#232#3e3d7

IMPORT#233#3e3d7

IMPORT#234#73e24

IMPORT#235#31b3e

IMPORT#236#73e24

IMPORT#237#73e24

IMPORT#238#8958d

IMPORT#239#2578b

IMPORT#240#b19b2

IMPORT#241#819b2

IMPORT#242#9561e

IMPORT#243#ac4bf

IMPORT#244#31a7e

IMPORT#245#31cfe

IMPORT#246#8778b

IMPORT#247#21d8d

IMPORT#248#7e486

IMPORT#249#687e4

IMPORT#250#7e486

IMPORT#251#7e486

IMPORT#252#7e486

IMPORT#253#7e486

IMPORT#254#6d7e4

IMPORT#255#777e4

IMPORT#256#73e6b

IMPORT#257#31b3e

IMPORT#258#73e6b

IMPORT#259#73e6b

IMPORT#260#aebd5

IMPORT#261#aebd5

IMPORT#262#ea0de

IMPORT#263#740ed

IMPORT#264#6ae8b

IMPORT#265#9abcd

IMPORT#266#31a7e

IMPORT#267#31cfe

IMPORT#268#8a6b7

IMPORT#269#138a6

IMPORT#270#8a6b7

IMPORT#271#8a6b7

IMPORT#272#adb0d

IMPORT#273#c66ca

IMPORT#274#66ca5

IMPORT#275#81acf

IMPORT#276#b9cc1

IMPORT#277#8bdb7

IMPORT#278#89d02

IMPORT#279#d5853

IMPORT#280#b6d8b

IMPORT#281#538a6

IMPORT#282#d38a6

IMPORT#283#c7de2

IMPORT#284#131bd

IMPORT#285#c7de2

IMPORT#286#c7de2

IMPORT#287#e3e8b

IMPORT#288#78fcd

IMPORT#289#b19b2

IMPORT#290#819b2

IMPORT#291#78fc5

IMPORT#292#fcd9d

IMPORT#293#817a7

IMPORT#294#131a9

IMPORT#295#131c1

IMPORT#296#fa9cb

IMPORT#297#85fa9

IMPORT#298#fa9cb

IMPORT#299#fa9cb

IMPORT#300#baf54

IMPORT#301#baf54

IMPORT#302#afeb5

IMPORT#303#afd75

IMPORT#304#8ee0f

IMPORT#305#cad8b

IMPORT#306#72b0d

IMPORT#307#d5fa9

IMPORT#308#75fa9

IMPORT#309#10961

IMPORT#310#fc109

IMPORT#311#10961

IMPORT#312#10961

IMPORT#313#b19b2

IMPORT#314#819b2

IMPORT#315#a2c54

IMPORT#316#60fc9

IMPORT#317#2583f

IMPORT#318#3f838

IMPORT#319#2aa51

IMPORT#320#60d8b

IMPORT#321#5830d

IMPORT#322#fc109

IMPORT#323#fc109

IMPORT#324#c7dfc

IMPORT#325#131bd

IMPORT#326#c7dfc

IMPORT#327#c7dfc

IMPORT#328#7f48d

IMPORT#329#fd38b

IMPORT#330#6ca57

IMPORT#331#6ca57

IMPORT#332#131a9

IMPORT#333#131c1

IMPORT#334#1f3e6

IMPORT#335#4c6f3

IMPORT#336#1f3e6

IMPORT#337#1f3e6

IMPORT#338#e7c17

IMPORT#339#e7d8b

IMPORT#340#f9f0d

IMPORT#341#7e987

IMPORT#342#48bb2

IMPORT#343#4bbb2

IMPORT#344#80c57

IMPORT#345#817a7

IMPORT#346#4c6a3

IMPORT#347#4c703

IMPORT#348#f59dd

IMPORT#349#85f59

IMPORT#350#f59dd

IMPORT#351#f59dd

IMPORT#352#773cd

IMPORT#353#dce8b

IMPORT#354#ec652

IMPORT#355#e0652

IMPORT#356#d5f59

IMPORT#357#75f59

IMPORT#358#6ea6e

IMPORT#359#66dbb

IMPORT#360#66dbb

IMPORT#361#db63d

IMPORT#362#f7424

IMPORT#363#dbb4b

IMPORT#364#3d9b6

IMPORT#365#dbb48

IMPORT#366#1411d

IMPORT#367#10961

IMPORT#368#3f00c

IMPORT#369#23209

IMPORT#370#b7d6b

IMPORT#371#a3729

IMPORT#372#2c26b

IMPORT#373#f0106

IMPORT#374#233dd

IMPORT#375#26703

IMPORT#376#dd402

IMPORT#377#10cf9

IMPORT#378#2c6d9

IMPORT#379#4111d

IMPORT#380#8a0f4

IMPORT#381#c1c43

IMPORT#382#6afb2

IMPORT#383#40afb

IMPORT#384#4b95c

IMPORT#385#cf740

IMPORT#386#62af3

IMPORT#387#cef7c

IMPORT#388#6865b

IMPORT#389#cc1e4

IMPORT#390#b3f7f

IMPORT#391#becfd

IMPORT#392#b3f7f

IMPORT#393#26b7c

IMPORT#394#f00ce

IMPORT#395#cc1e4

IMPORT#396#cc1e4

IMPORT#397#2cc1e

IMPORT#398#cc1e4

IMPORT#399#cc1e4

IMPORT#400#f3b7c

IMPORT#401#cc1e4

IMPORT#402#d4586

IMPORT#403#cc1e4

IMPORT#404#4c7c0

IMPORT#405#4c7c0

IMPORT#406#cc1e4

IMPORT#407#b9cc1

IMPORT#408#98dac

IMPORT#409#3389f

IMPORT#410#d03b2

IMPORT#411#f56f4

IMPORT#412#a338c

IMPORT#413#cc1e4

IMPORT#414#b9cc1

IMPORT#415#363ef

IMPORT#416#eabb6

IMPORT#417#4f56f

IMPORT#418#b3b7c

IMPORT#419#cc1e4

IMPORT#420#f6bb6

IMPORT#421#eebb6

IMPORT#422#eabb6

IMPORT#423#b9cc1

IMPORT#424#b3079

IMPORT#425#eae13

IMPORT#426#ca844

IMPORT#427#fa453

IMPORT#428#aae8b

IMPORT#429#e914c

IMPORT#430#aba2c

IMPORT#431#5428d

IMPORT#432#5bc06

IMPORT#433#e367a

IMPORT#434#e7f76

IMPORT#435#78458

IMPORT#436#78458

IMPORT#437#233dd

IMPORT#438#dcbb2

IMPORT#439#5bc06

IMPORT#440#e367a

IMPORT#441#8d9ea

IMPORT#442#e7f76

IMPORT#443#31067

IMPORT#444#233dd

IMPORT#445#5bc06

IMPORT#446#e367d

IMPORT#447#389c0

IMPORT#448#7c6fc

IMPORT#449#5bc06

IMPORT#450#e367b

IMPORT#451#8d9ee

IMPORT#452#e7376

IMPORT#453#6c44b

IMPORT#454#87c03

IMPORT#455#21f03

IMPORT#456#1e887

IMPORT#457#c1dad

IMPORT#458#3389c

IMPORT#459#e7406

IMPORT#460#652b7

IMPORT#461#f4067

IMPORT#462#7e3e0

IMPORT#463#233dd

IMPORT#464#5bc06

IMPORT#465#e367c

IMPORT#466#cc683

IMPORT#467#746ea

IMPORT#468#233dd

IMPORT#469#233dd

IMPORT#470#8cf74

IMPORT#471#50331

IMPORT#472#50084

IMPORT#473#e3f44

IMPORT#474#1e4ba

IMPORT#475#1e4be

IMPORT#476#5bc06

IMPORT#477#e367b

IMPORT#478#8d9ee

IMPORT#479#8cf74

IMPORT#480#233dd

IMPORT#481#cc1e4

IMPORT#482#cc1e4

IMPORT#483#4c7c0

IMPORT#484#4c7c0

IMPORT#485#becfd

IMPORT#486#becfd

IMPORT#487#3d9b6

IMPORT#488#3d9b6

IMPORT#489#becfd

IMPORT#490#becfd

IMPORT#491#3d9b6

IMPORT#492#3d9b6

IMPORT#493#1fc04

IMPORT#494#4c6fc

IMPORT#495#1fc04

IMPORT#496#1fc04

IMPORT#497#a5067

IMPORT#498#56067

IMPORT#499#56067

IMPORT#500#81f79

IMPORT#501#6c6d9

IMPORT#502#5ac43

IMPORT#503#6d64f

IMPORT#504#2c3ff

IMPORT#505#40211

IMPORT#506#40211

IMPORT#507#84621

IMPORT#508#8462d

IMPORT#509#845c4

IMPORT#510#84540

IMPORT#511#84001

IMPORT#512#84001

IMPORT#513#84dad

IMPORT#514#e84da

IMPORT#515#33dd0

IMPORT#516#33dd0

IMPORT#517#41eb4

IMPORT#518#41e74

IMPORT#519#aa402

IMPORT#520#9a402

IMPORT#521#c9b64

IMPORT#522#457df

IMPORT#523#1cc41

IMPORT#524#ec433

IMPORT#525#46563

IMPORT#526#8f340

IMPORT#527#d1fd4

IMPORT#528#d1fd6

IMPORT#529#b8582

IMPORT#530#7f40b

IMPORT#531#47f40

IMPORT#532#7f5d5

IMPORT#533#144f6

IMPORT#534#58e36

IMPORT#535#6586f

IMPORT#536#35842

IMPORT#537#3f477

IMPORT#538#e5b64

IMPORT#539#b8242

IMPORT#540#c3942

IMPORT#541#47057

IMPORT#542#b0fc8

IMPORT#543#afbd2

IMPORT#544#b740b

IMPORT#545#18c13

IMPORT#546#ef8d8

IMPORT#547#dc146

IMPORT#548#77402

IMPORT#549#ec322

IMPORT#550#ec321

IMPORT#551#747e0

IMPORT#552#c7341

IMPORT#553#bac3b

IMPORT#554#81ec9

IMPORT#555#747e2

IMPORT#556#c7341

IMPORT#557#bac39

IMPORT#558#1c482

IMPORT#559#76048

IMPORT#560#70e42

IMPORT#561#ec539

IMPORT#562#747e4

IMPORT#563#c7341

IMPORT#564#47021

IMPORT#565#8c391

IMPORT#566#bac3f

IMPORT#567#80ca9

IMPORT#568#51ad5

IMPORT#569#747e3

IMPORT#570#c7341

IMPORT#571#bac38

IMPORT#572#d1f44

IMPORT#573#47053

IMPORT#574#dd415

IMPORT#575#8c3e3

IMPORT#576#8f752

IMPORT#577#804c9

IMPORT#578#b8238

IMPORT#579#dc123

IMPORT#580#c3938

IMPORT#581#4e371

IMPORT#582#c9961

IMPORT#583#49961

IMPORT#584#e5961

IMPORT#585#586ed

IMPORT#586#d1fc7

IMPORT#587#77404

IMPORT#588#ef0eb

IMPORT#589#1b4bb

IMPORT#590#81b49

IMPORT#591#b49ef

IMPORT#592#35842

IMPORT#593#138ef

IMPORT#594#be63b

IMPORT#595#1ca2d

IMPORT#596#b4b53

IMPORT#597#a1757

IMPORT#598#41175

IMPORT#599#3a757

IMPORT#600#1fe22

IMPORT#601#1f052

IMPORT#602#d1f45

IMPORT#603#ec201

IMPORT#604#61182

IMPORT#605#47053

IMPORT#606#dd415

IMPORT#607#47040

IMPORT#608#8c3f0

IMPORT#609#8c3e3

IMPORT#610#d1f46

IMPORT#611#4232f

IMPORT#612#c132f

IMPORT#613#5eca5

IMPORT#614#b8463

IMPORT#615#6da6e

IMPORT#616#d1e46

IMPORT#617#c3f63

IMPORT#618#6ea6e

IMPORT#619#2b8d5

IMPORT#620#11820

IMPORT#621#e63bd

IMPORT#622#a4fd3

IMPORT#623#3ffd3

IMPORT#624#d3c33

IMPORT#625#d5757

IMPORT#626#44cb7

IMPORT#627#43130

IMPORT#628#b4078

IMPORT#629#cb740

IMPORT#630#ced90

IMPORT#631#dfc80

IMPORT#632#3fee2

IMPORT#633#fee21

IMPORT#634#1492a

IMPORT#635#88ba2

IMPORT#636#1e4bd

IMPORT#637#819f8

IMPORT#638#fad1c

IMPORT#639#43fc6

IMPORT#640#bb2d0

IMPORT#641#b4113

IMPORT#642#b4113

IMPORT#643#b6ecb

IMPORT#644#eadc0

IMPORT#645#23ea2

IMPORT#646#b88f2

IMPORT#647#6d402

IMPORT#648#c6941

IMPORT#649#c6941

IMPORT#650#d6048

IMPORT#651#c6941

IMPORT#652#c6941

IMPORT#653#b5415

IMPORT#654#5c123

IMPORT#655#49961

IMPORT#656#6d404

IMPORT#657#41175

IMPORT#658#b5415

IMPORT#659#5c146

IMPORT#660#e84da

IMPORT#661#2ee8e

IMPORT#662#83f47

IMPORT#663#960d9

IMPORT#664#10961

IMPORT#665#10961

IMPORT#666#6ea4f

IMPORT#667#92ea7

IMPORT#668#8ed92

IMPORT#669#1eb27

IMPORT#670#1a782

IMPORT#671#ce270

IMPORT#672#14bb1

IMPORT#673#4bd2b

IMPORT#674#4bd27

IMPORT#675#efc63

IMPORT#676#cce53

IMPORT#677#74ca5

IMPORT#678#32903

IMPORT#679#8f052

IMPORT#680#4765c

IMPORT#681#11d97

IMPORT#682#2bd34

IMPORT#683#3826d

IMPORT#684#fa1b5

IMPORT#685#9b421

IMPORT#686#970cf

IMPORT#687#cb46e

IMPORT#688#14e83

IMPORT#689#bdd9b

IMPORT#690#6e54b

IMPORT#691#8f1ad

IMPORT#692#2ef33

IMPORT#693#e2cb4

IMPORT#694#2dcf6

IMPORT#695#ced90

IMPORT#696#73de4

IMPORT#697#3db64

IMPORT#698#bbb2d

IMPORT#699#567b2

IMPORT#700#8a57d

IMPORT#701#4cb65

IMPORT#702#6e54c

IMPORT#703#886ac

IMPORT#704#8e629

IMPORT#705#1b506

IMPORT#706#d6be6

IMPORT#707#cabe5

IMPORT#708#f4776

IMPORT#709#d9707

IMPORT#710#11d97

IMPORT#711#4765c

IMPORT#712#38b0a

IMPORT#713#f5cf4

IMPORT#714#cc1e4

IMPORT#715#cae13

IMPORT#716#cc1e4

IMPORT#717#cc1e4

IMPORT#718#cc1e4

IMPORT#719#4052f

IMPORT#720#4052f

IMPORT#721#57b7c

IMPORT#722#78fb2

IMPORT#723#567b2

IMPORT#724#194ad

IMPORT#725#1d94a

IMPORT#726#1d94a

IMPORT#727#b6d95

IMPORT#728#f4af0

IMPORT#729#f49f0

IMPORT#730#52b4d

IMPORT#731#a66f5

IMPORT#732#ced90

IMPORT#733#dabb6

IMPORT#734#f6bb6

IMPORT#735#8a563

IMPORT#736#bd3f4

IMPORT#737#fabb6

IMPORT#738#fa453

IMPORT#739#eae8b

IMPORT#740#fa453

IMPORT#741#dae8b

IMPORT#742#5428e

IMPORT#743#5bc06

IMPORT#744#e367c

IMPORT#745#ddb76

IMPORT#746#346e5

IMPORT#747#5bc06

IMPORT#748#e367d

IMPORT#749#8d9f6

IMPORT#750#fb764

IMPORT#751#892e3

IMPORT#752#5bc06

IMPORT#753#e367c

IMPORT#754#2b4d3

IMPORT#755#54757

IMPORT#756#b04e3

IMPORT#757#5bc06

IMPORT#758#e3676

IMPORT#759#8d9da

IMPORT#760#5bc06

IMPORT#761#e367d

IMPORT#762#8d9f6

IMPORT#763#9c176

IMPORT#764#4ce8c

IMPORT#765#4ce8c

IMPORT#766#9d402

IMPORT#767#2aa8c

IMPORT#768#233dd

IMPORT#769#dd06a

IMPORT#770#8aba0

IMPORT#771#7df7d

IMPORT#772#23ea2

IMPORT#773#ff867

IMPORT#774#a66f5

IMPORT#775#66f56

IMPORT#776#99bd5

IMPORT#777#99bd5

IMPORT#778#96fff

IMPORT#779#33dd0

IMPORT#780#233dd

IMPORT#781#233dd

IMPORT#782#ed1db

IMPORT#783#76f04

IMPORT#784#bb476

IMPORT#785#76f04

IMPORT#786#bb476

IMPORT#787#8cf74

IMPORT#788#233dd

IMPORT#789#b153a

IMPORT#790#b774a

IMPORT#791#52ed8

IMPORT#792#13106

IMPORT#793#13106

IMPORT#794#31063

IMPORT#795#31063

IMPORT#796#7b432

IMPORT#797#78c45

IMPORT#798#32c19

IMPORT#799#cb13a

IMPORT#800#ec322

IMPORT#801#ec321

IMPORT#802#6ea6e

IMPORT#803#75646

IMPORT#804#40474

IMPORT#805#68404

IMPORT#806#40474

IMPORT#807#40474

IMPORT#808#dd06a

IMPORT#809#dd06a

IMPORT#810#54c6b

IMPORT#811#75744

IMPORT#812#ec653

IMPORT#813#233dd

IMPORT#814#54a2d

IMPORT#815#dd06a

IMPORT#816#233dd

IMPORT#817#233dd

IMPORT#818#c410b

IMPORT#819#c410b

IMPORT#820#ac322

IMPORT#821#ac321

IMPORT#822#c410b

IMPORT#823#ab46d

IMPORT#824#c410b

IMPORT#825#c6c41

IMPORT#826#c410b

IMPORT#827#42a80

IMPORT#828#ec322

IMPORT#829#ec321

IMPORT#830#6ea6e

IMPORT#831#72a46

IMPORT#832#ca218

IMPORT#833#17573

IMPORT#834#41175

IMPORT#835#17573

IMPORT#836#17573

IMPORT#837#2b052

IMPORT#838#fd1d9

IMPORT#839#fd1d9

IMPORT#840#fa453

IMPORT#841#dae8b

IMPORT#842#61182

IMPORT#843#2be22

IMPORT#844#72b45

IMPORT#845#233dd

IMPORT#846#233dd

IMPORT#847#ec322

IMPORT#848#ec321

IMPORT#849#1a246

IMPORT#850#9961b

IMPORT#851#49961

IMPORT#852#9961b

IMPORT#853#9961b

IMPORT#854#586ee

IMPORT#855#586ee

IMPORT#856#868c0

IMPORT#857#482c5

IMPORT#858#482c5

IMPORT#859#2c322

IMPORT#860#2c321

IMPORT#861#482c5

IMPORT#862#2dd46

IMPORT#863#482c4

IMPORT#864#86048

IMPORT#865#482c4

IMPORT#866#b7009

IMPORT#867#ec322

IMPORT#868#ec321

IMPORT#869#c4135

IMPORT#870#c6c41

IMPORT#871#c4135

IMPORT#872#c4135

IMPORT#873#4d4ec

IMPORT#874#4d4e0

IMPORT#875#a4255

IMPORT#876#34a46

IMPORT#877#34b44

IMPORT#878#c4121

IMPORT#879#c4121

IMPORT#880#ac322

IMPORT#881#ac321

IMPORT#882#c4121

IMPORT#883#20746

IMPORT#884#c6c41

IMPORT#885#2c322

IMPORT#886#2c321

IMPORT#887#8c546

IMPORT#888#1238d

IMPORT#889#1c123

IMPORT#890#1238d

IMPORT#891#1238d

IMPORT#892#8e372

IMPORT#893#8e372

IMPORT#894#e3100

IMPORT#895#ac322

IMPORT#896#ac321

IMPORT#897#43346

IMPORT#898#c4142

IMPORT#899#c6c41

IMPORT#900#c4142

IMPORT#901#c4142

IMPORT#902#50aac

IMPORT#903#50aa0

IMPORT#904#1050a

IMPORT#905#1050a

IMPORT#906#50c80

IMPORT#907#14630

IMPORT#908#14630

IMPORT#909#ac322

IMPORT#910#ac321

IMPORT#911#14630

IMPORT#912#31b46

IMPORT#913#1c146

IMPORT#914#ec322

IMPORT#915#ec321

IMPORT#916#c6104

IMPORT#917#33346

IMPORT#918#33246

IMPORT#919#41532

IMPORT#920#a1415

IMPORT#921#41532

IMPORT#922#41532

IMPORT#923#233dd

IMPORT#924#33dd0

IMPORT#925#7f205

IMPORT#926#233dd

IMPORT#927#233dd

IMPORT#928#8cf74

IMPORT#929#f7419

IMPORT#930#b1ac1

IMPORT#931#f36b8

IMPORT#932#61a7f

IMPORT#933#cbec9

IMPORT#934#5eca5

IMPORT#935#4232f

IMPORT#936#c132f

IMPORT#937#6c322

IMPORT#938#6c321

IMPORT#939#4153d

IMPORT#940#a1415

IMPORT#941#4153d

IMPORT#942#4153d

IMPORT#943#54f76

IMPORT#944#54f76

IMPORT#945#4f140

IMPORT#946#1a04c

IMPORT#947#3c446

IMPORT#948#3c446

IMPORT#949#952ae

IMPORT#950#952ae

IMPORT#951#1257a

IMPORT#952#952ae

IMPORT#953#952ae

IMPORT#954#952ae

IMPORT#955#54abc

IMPORT#956#54abc

IMPORT#957#2a20f

IMPORT#958#52ac1

IMPORT#959#1b0bf

IMPORT#960#4aac6

IMPORT#961#4aac0

IMPORT#962#19c71

IMPORT#963#1cb58

IMPORT#964#18804

IMPORT#965#91b95

IMPORT#966#1b952

IMPORT#967#2fa33

IMPORT#968#385b5

IMPORT#969#385b5

IMPORT#970#91b95

IMPORT#971#2451b

IMPORT#972#ed237

IMPORT#973#51ba5

IMPORT#974#20cad

IMPORT#975#1c7df

IMPORT#976#67c86

IMPORT#977#9f25d

IMPORT#978#567c5

IMPORT#979#1f567

IMPORT#980#666db

IMPORT#981#7d591

IMPORT#982#47d59

IMPORT#983#5bc06

IMPORT#984#e367a

IMPORT#985#8d9ea

IMPORT#986#233dd

IMPORT#987#c7eaa

IMPORT#988#1b952

IMPORT#989#91b95

IMPORT#990#91b95

IMPORT#991#8071f

IMPORT#992#b46e5

IMPORT#993#69a69

IMPORT#994#b63da

IMPORT#995#878e5

IMPORT#996#1d835

IMPORT#997#bfd54

IMPORT#998#ba843

IMPORT#999#878e5

IMPORT#1000#4b40

IMPORT#1001#5d40

IMPORT#1002#5518

IMPORT#1003#44da

IMPORT#1004#3cda

IMPORT#1005#778e

IMPORT#1006#92af

IMPORT#1007#affd

IMPORT#1008#a353

IMPORT#1009#362f

IMPORT#1010#eae1

IMPORT#1011#3ebb

IMPORT#1012#f2bb

IMPORT#1013#e3f4

IMPORT#1014#a22e

IMPORT#1015#3d5b

IMPORT#1016#f906

IMPORT#1017#eaed

IMPORT#1018#bddc

IMPORT#1019#f2bb

IMPORT#1020#4af4

IMPORT#1021#f6bb

IMPORT#1022#ae8e

IMPORT#1023#bddc

IMPORT#1024#ceea

IMPORT#1025#ae8e

IMPORT#1026#1863

IMPORT#1027#e3f4

IMPORT#1028#e89d

IMPORT#1029#affd

IMPORT#1030#affd

IMPORT#1031#ae8e

IMPORT#1032#5428

IMPORT#1033#ad8e

IMPORT#1034#bddc

IMPORT#1035#50ea

IMPORT#1036#b732

IMPORT#1037#5d40

IMPORT#1038#83ef

IMPORT#1039#1297

IMPORT#1040#e3f4

IMPORT#1041#e3f4

IMPORT#1042#5bc0

IMPORT#1043#e360

IMPORT#1044#f677

IMPORT#1045#44ef

IMPORT#1046#83ef

IMPORT#1047#1e4b

IMPORT#1048#5bc0

IMPORT#1049#e360

IMPORT#1050#8d83

IMPORT#1051#e3f4

IMPORT#1052#3570

IMPORT#1053#30aa

IMPORT#1054#e835

IMPORT#1055#d4e8

IMPORT#1056#e835

IMPORT#1057#6431

IMPORT#1058#1ec1

IMPORT#1059#1ec1

IMPORT#1060#2b24

IMPORT#1061#2724

IMPORT#1062#ac91

IMPORT#1063#9c91

IMPORT#1064#2461

IMPORT#1065#2461

IMPORT#1066#c18b

IMPORT#1067#1abc

IMPORT#1068#f56f

IMPORT#1069#cc1e

IMPORT#1070#aaba

IMPORT#1071#793e

IMPORT#1072#fa45

IMPORT#1073#8ae8

IMPORT#1074#5428

IMPORT#1075#1e4c

IMPORT#1076#1e4c

IMPORT#1077#e3f4

IMPORT#1078#8eea

IMPORT#1079#233d

IMPORT#1080#5bc0

IMPORT#1081#e367

IMPORT#1082#b48a

IMPORT#1083#d9ad

IMPORT#1084#f7d7

IMPORT#1085#8fd1

IMPORT#1086#fdf5

IMPORT#1087#e38a

IMPORT#1088#59fc

IMPORT#1089#2c77

IMPORT#1090#9ff0

IMPORT#1091#5428

IMPORT#1092#233d

IMPORT#1093#aa7c

IMPORT#1094#1d40

IMPORT#1095#233d

IMPORT#1096#8cf7

IMPORT#1097#33dd

IMPORT#1098#8cf7

IMPORT#1099#233d

IMPORT#1100#cc1e

IMPORT#1101#f56f

IMPORT#1102#b2e6

IMPORT#1103#3de7

IMPORT#1104#9c20

IMPORT#1105#a708

IMPORT#1106#7bd2

IMPORT#1107#e98d

IMPORT#1108#984f

IMPORT#1109#34c1

IMPORT#1110#9d30

IMPORT#1111#6c6d

IMPORT#1112#70a0

IMPORT#1113#404b

IMPORT#1114#1343

IMPORT#1115#db0c

IMPORT#1116#7b3f

IMPORT#1117#7b3f

IMPORT#1118#d41e

IMPORT#1119#db0d

IMPORT#1120#6c34

IMPORT#1121#98a8

IMPORT#1122#da4d

IMPORT#1123#e03f

IMPORT#1124#3065

IMPORT#1125#f5cb

IMPORT#1126#b3f8

IMPORT#1127#91e4

IMPORT#1128#4f7c

IMPORT#1129#35e4

IMPORT#1130#7c57

IMPORT#1131#c7b2

IMPORT#1132#c7b2

IMPORT#1133#de0e

IMPORT#1134#b3f7

IMPORT#1135#b3f7

IMPORT#1136#b3f7

IMPORT#1137#6507

IMPORT#1138#b3f7

IMPORT#1139#7b3f

IMPORT#1140#b3f7

IMPORT#1141#2c50

IMPORT#1142#7b3f

IMPORT#1143#7b3f

IMPORT#1144#5a75

IMPORT#1145#5a6a

IMPORT#1146#5a64

IMPORT#1147#37e0

IMPORT#1148#900d

IMPORT#1149#df9d

IMPORT#1150#e750

IMPORT#1151#bb0e

IMPORT#1152#edf9

IMPORT#1153#33c3

IMPORT#1154#a8d4

IMPORT#1155#4127

IMPORT#1156#1a19

IMPORT#1157#121c

IMPORT#1158#6df5

IMPORT#1159#9b75

IMPORT#1160#b20c

IMPORT#1161#1b1f

IMPORT#1162#a7cc

IMPORT#1163#9f32

IMPORT#1164#d585

IMPORT#1165#1bd5

IMPORT#1166#5846

IMPORT#1167#6f56

IMPORT#1168#46f5

IMPORT#1169#4c5b

IMPORT#1170#6990

IMPORT#1171#394c

IMPORT#1172#3296

IMPORT#1173#cf29

IMPORT#1174#9c04

IMPORT#1175#fe86

IMPORT#1176#7015

IMPORT#1177#15b5

IMPORT#1178#9633

IMPORT#1179#3354

IMPORT#1180#94ca

IMPORT#1181#94ca

IMPORT#1182#94ca

IMPORT#1183#94ca

IMPORT#1184#94ca

IMPORT#1185#d4e8

IMPORT#1186#21c1

IMPORT#1187#3827

IMPORT#1188#21c1

IMPORT#1189#1827

IMPORT#1190#9902

IMPORT#1191#9c02

IMPORT#1192#1037

IMPORT#1193#5699

IMPORT#1194#5699

IMPORT#1195#1169

IMPORT#1196#eae1

IMPORT#1197#5699

IMPORT#1198#5699

IMPORT#1199#45a6

IMPORT#1200#6c31

IMPORT#1201#9b55

IMPORT#1202#1169

IMPORT#1203#a708

IMPORT#1204#69a6

IMPORT#1205#842d

IMPORT#1206#45a7

IMPORT#1207#c91b

IMPORT#1208#cadb

IMPORT#1209#46d5

IMPORT#1210#b6d5

IMPORT#1211#493e

IMPORT#1212#493e

IMPORT#1213#4524

IMPORT#1214#24f8

IMPORT#1215#ba31

IMPORT#1216#24f9

IMPORT#1217#ba31

IMPORT#1218#493e

IMPORT#1219#493e

IMPORT#1220#493f

IMPORT#1221#4524

IMPORT#1222#24fb

IMPORT#1223#ba31

IMPORT#1224#24ff

IMPORT#1225#ba31

IMPORT#1226#493e

@unixroot/usr/lib/qpdf_dll.a

IMPORT#1#ca16d7c

IMPORT#2#329d764

IMPORT#3#885ff5a

IMPORT#4#2332986

IMPORT#5#b405136

IMPORT#6#88caec7

IMPORT#7#88cae07

IMPORT#8#33347a4

IMPORT#9#6a95836

IMPORT#10#6b03b1

IMPORT#11#b6b52b

IMPORT#12#9a4673

IMPORT#13#6a18ce

IMPORT#14#7018ce

IMPORT#15#1a4673

IMPORT#16#6a9583

IMPORT#17#6b03b1

IMPORT#18#b40513

IMPORT#19#d2bb29

IMPORT#20#d27b29

IMPORT#21#ba2ca9

IMPORT#22#32ecfe

IMPORT#23#c78314

IMPORT#24#c78314

IMPORT#25#c78314

IMPORT#26#c78314

IMPORT#27#78314b

IMPORT#28#783148

IMPORT#29#30c59b

IMPORT#30#30c7cf

IMPORT#31#c78315

IMPORT#32#c78315

IMPORT#33#30ce70

IMPORT#34#e0c52c

IMPORT#35#e0c520

IMPORT#36#e0c688

IMPORT#37#30c43c

IMPORT#38#fc6310

IMPORT#39#fc6310

IMPORT#40#883445

IMPORT#41#ce20a9

IMPORT#42#e20979

IMPORT#43#206127

IMPORT#44#7ec143

IMPORT#45#e20b25

IMPORT#46#c3389a

IMPORT#47#c4c338

IMPORT#48#c3389a

IMPORT#49#c3389a

IMPORT#50#3882de

IMPORT#51#b0640c

IMPORT#52#80640c

IMPORT#53#89bb06

IMPORT#54#89b806

IMPORT#55#dc0338

IMPORT#56#b40338

IMPORT#57#c4c338

IMPORT#58#c4c338

IMPORT#59#883445

IMPORT#60#ce20a9

IMPORT#61#e20979

IMPORT#62#7ec143

IMPORT#63#206127

IMPORT#64#3389b8

IMPORT#65#f40338

IMPORT#66#3389bb

IMPORT#67#8837cf

IMPORT#68#86d954

IMPORT#69#194adf

IMPORT#70#3389a4

IMPORT#71#3389a7

IMPORT#72#3389a6

IMPORT#73#838584

IMPORT#74#3882de

IMPORT#75#e20b25

IMPORT#76#4c70c0

IMPORT#77#f40338

IMPORT#78#f40338

IMPORT#79#4c6ac0

IMPORT#80#4bc546

IMPORT#81#44bc54

IMPORT#82#207245

IMPORT#83#b3f7f5

IMPORT#84#b3f7f5

IMPORT#85#b3f7f5

IMPORT#86#b3f7f4

IMPORT#87#7b3f7e

IMPORT#88#b3f7f4

IMPORT#89#dfb550

IMPORT#90#6507b4

IMPORT#91#2c5075

IMPORT#92#7b3f7e

IMPORT#93#7b3f7e

IMPORT#94#7b3f7e

IMPORT#95#7b3f7e

IMPORT#96#c7cfd6

IMPORT#97#fc5d0a

IMPORT#98#fcad0a

IMPORT#99#6d1702

IMPORT#100#cf9ab

IMPORT#101#1f3ff

IMPORT#102#131f2

IMPORT#103#131f2

IMPORT#104#1f3e9

IMPORT#105#5d73d

IMPORT#106#f9e3d

IMPORT#107#70d70

IMPORT#108#974f4

IMPORT#109#f3f1c

IMPORT#110#1f3ef

IMPORT#111#f3e46

IMPORT#112#daad7

IMPORT#113#4aad7

IMPORT#114#ab5c1

IMPORT#115#ab5c1

IMPORT#116#7ec14

IMPORT#117#88344

IMPORT#118#ce20a

IMPORT#119#20612

IMPORT#120#e20b2

IMPORT#121#3882d

IMPORT#122#43389

IMPORT#123#51433

IMPORT#124#e2097

IMPORT#125#43389

IMPORT#126#43389

IMPORT#127#c0338

IMPORT#128#c0338

IMPORT#129#51433

IMPORT#130#51433

IMPORT#131#42e6e

IMPORT#132#641b0

IMPORT#133#4d906

IMPORT#134#641b0

IMPORT#135#641b0

IMPORT#136#641b0

IMPORT#137#d357f

IMPORT#138#d357f

IMPORT#139#fb966

IMPORT#140#d5fda

IMPORT#141#d5fda

IMPORT#142#fbb9c

IMPORT#143#57f6b

IMPORT#144#57f68

IMPORT#145#57f82

IMPORT#146#7ee7c

IMPORT#147#4d5fe

IMPORT#148#1257b

IMPORT#149#4d906

IMPORT#150#ed84f

IMPORT#151#edc45

IMPORT#152#edc49

IMPORT#153#fb6bf

IMPORT#154#4c7d2

IMPORT#155#4c7d2

IMPORT#156#83859

IMPORT#157#838dc

IMPORT#158#1f4be

IMPORT#159#1f4be

IMPORT#160#ddfc4

IMPORT#161#1f4da

IMPORT#162#4d906

IMPORT#163#a57ec

IMPORT#164#31b32

IMPORT#165#a57e0

IMPORT#166#73295

IMPORT#167#73295

IMPORT#168#73295

IMPORT#169#94744

IMPORT#170#31a72

IMPORT#171#31cf2

IMPORT#172#7e848

IMPORT#173#687e8

IMPORT#174#7e848

IMPORT#175#7e848

IMPORT#176#6ca54

IMPORT#177#6ca54

IMPORT#178#9ea86

IMPORT#179#229be

IMPORT#180#27619

IMPORT#181#8a228

IMPORT#182#3ab6d

IMPORT#183#d90f3

IMPORT#184#849cf

IMPORT#185#49d8b

IMPORT#186#1270d

IMPORT#187#6d7e8

IMPORT#188#777e8

IMPORT#189#44eb7

IMPORT#190#b244e

IMPORT#191#44eb7

IMPORT#192#44eb7

IMPORT#193#b19b2

IMPORT#194#819b2

IMPORT#195#eb6cf

IMPORT#196#adb0d

IMPORT#197#b6d8b

IMPORT#198#b244e

IMPORT#199#b244e

IMPORT#200#8eab7

IMPORT#201#c88ea

IMPORT#202#8eab7

IMPORT#203#8eab7

IMPORT#204#b19b2

IMPORT#205#819b2

IMPORT#206#ab6cf

IMPORT#207#adb0d

IMPORT#208#b6d8b

IMPORT#209#c88ea

IMPORT#210#c88ea

IMPORT#211#4c30d

IMPORT#212#cb931

IMPORT#213#c6cb9

IMPORT#214#cb931

IMPORT#215#cb931

IMPORT#216#b19b2

IMPORT#217#819b2

IMPORT#218#c577c

IMPORT#219#fc631

IMPORT#220#30d8b

IMPORT#221#c69b9

IMPORT#222#c73b9

IMPORT#223#e4bcd

IMPORT#224#3d793

IMPORT#225#3e3d7

IMPORT#226#3d793

IMPORT#227#3d793

IMPORT#228#92e8b

IMPORT#229#b19b2

IMPORT#230#819b2

IMPORT#231#a82ed

IMPORT#232#3e3d7

IMPORT#233#3e3d7

IMPORT#234#73e24

IMPORT#235#31b3e

IMPORT#236#73e24

IMPORT#237#73e24

IMPORT#238#8958d

IMPORT#239#2578b

IMPORT#240#b19b2

IMPORT#241#819b2

IMPORT#242#9561e

IMPORT#243#ac4bf

IMPORT#244#31a7e

IMPORT#245#31cfe

IMPORT#246#8778b

IMPORT#247#21d8d

IMPORT#248#7e486

IMPORT#249#687e4

IMPORT#250#7e486

IMPORT#251#7e486

IMPORT#252#7e486

IMPORT#253#7e486

IMPORT#254#6d7e4

IMPORT#255#777e4

IMPORT#256#73e6b

IMPORT#257#31b3e

IMPORT#258#73e6b

IMPORT#259#73e6b

IMPORT#260#aebd5

IMPORT#261#aebd5

IMPORT#262#ea0de

IMPORT#263#740ed

IMPORT#264#6ae8b

IMPORT#265#9abcd

IMPORT#266#31a7e

IMPORT#267#31cfe

IMPORT#268#8a6b7

IMPORT#269#138a6

IMPORT#270#8a6b7

IMPORT#271#8a6b7

IMPORT#272#adb0d

IMPORT#273#c66ca

IMPORT#274#66ca5

IMPORT#275#81acf

IMPORT#276#b9cc1

IMPORT#277#8bdb7

IMPORT#278#89d02

IMPORT#279#d5853

IMPORT#280#b6d8b

IMPORT#281#538a6

IMPORT#282#d38a6

IMPORT#283#c7de2

IMPORT#284#131bd

IMPORT#285#c7de2

IMPORT#286#c7de2

IMPORT#287#e3e8b

IMPORT#288#78fcd

IMPORT#289#b19b2

IMPORT#290#819b2

IMPORT#291#78fc5

IMPORT#292#fcd9d

IMPORT#293#817a7

IMPORT#294#131a9

IMPORT#295#131c1

IMPORT#296#fa9cb

IMPORT#297#85fa9

IMPORT#298#fa9cb

IMPORT#299#fa9cb

IMPORT#300#baf54

IMPORT#301#baf54

IMPORT#302#afeb5

IMPORT#303#afd75

IMPORT#304#8ee0f

IMPORT#305#cad8b

IMPORT#306#72b0d

IMPORT#307#d5fa9

IMPORT#308#75fa9

IMPORT#309#10961

IMPORT#310#fc109

IMPORT#311#10961

IMPORT#312#10961

IMPORT#313#b19b2

IMPORT#314#819b2

IMPORT#315#a2c54

IMPORT#316#60fc9

IMPORT#317#2583f

IMPORT#318#3f838

IMPORT#319#2aa51

IMPORT#320#60d8b

IMPORT#321#5830d

IMPORT#322#fc109

IMPORT#323#fc109

IMPORT#324#c7dfc

IMPORT#325#131bd

IMPORT#326#c7dfc

IMPORT#327#c7dfc

IMPORT#328#7f48d

IMPORT#329#fd38b

IMPORT#330#6ca57

IMPORT#331#6ca57

IMPORT#332#131a9

IMPORT#333#131c1

IMPORT#334#1f3e6

IMPORT#335#4c6f3

IMPORT#336#1f3e6

IMPORT#337#1f3e6

IMPORT#338#e7c17

IMPORT#339#e7d8b

IMPORT#340#f9f0d

IMPORT#341#7e987

IMPORT#342#48bb2

IMPORT#343#4bbb2

IMPORT#344#80c57

IMPORT#345#817a7

IMPORT#346#4c6a3

IMPORT#347#4c703

IMPORT#348#f59dd

IMPORT#349#85f59

IMPORT#350#f59dd

IMPORT#351#f59dd

IMPORT#352#773cd

IMPORT#353#dce8b

IMPORT#354#ec652

IMPORT#355#e0652

IMPORT#356#d5f59

IMPORT#357#75f59

IMPORT#358#6ea6e

IMPORT#359#66dbb

IMPORT#360#66dbb

IMPORT#361#db63d

IMPORT#362#f7424

IMPORT#363#dbb4b

IMPORT#364#3d9b6

IMPORT#365#dbb48

IMPORT#366#1411d

IMPORT#367#10961

IMPORT#368#3f00c

IMPORT#369#23209

IMPORT#370#b7d6b

IMPORT#371#a3729

IMPORT#372#2c26b

IMPORT#373#f0106

IMPORT#374#233dd

IMPORT#375#26703

IMPORT#376#dd402

IMPORT#377#10cf9

IMPORT#378#2c6d9

IMPORT#379#4111d

IMPORT#380#8a0f4

IMPORT#381#c1c43

IMPORT#382#6afb2

IMPORT#383#40afb

IMPORT#384#4b95c

IMPORT#385#cf740

IMPORT#386#62af3

IMPORT#387#cef7c

IMPORT#388#6865b

IMPORT#389#cc1e4

IMPORT#390#b3f7f

IMPORT#391#becfd

IMPORT#392#b3f7f

IMPORT#393#26b7c

IMPORT#394#f00ce

IMPORT#395#cc1e4

IMPORT#396#cc1e4

IMPORT#397#2cc1e

IMPORT#398#cc1e4

IMPORT#399#cc1e4

IMPORT#400#f3b7c

IMPORT#401#cc1e4

IMPORT#402#d4586

IMPORT#403#cc1e4

IMPORT#404#4c7c0

IMPORT#405#4c7c0

IMPORT#406#cc1e4

IMPORT#407#b9cc1

IMPORT#408#98dac

IMPORT#409#3389f

IMPORT#410#d03b2

IMPORT#411#f56f4

IMPORT#412#a338c

IMPORT#413#cc1e4

IMPORT#414#b9cc1

IMPORT#415#363ef

IMPORT#416#eabb6

IMPORT#417#4f56f

IMPORT#418#b3b7c

IMPORT#419#cc1e4

IMPORT#420#f6bb6

IMPORT#421#eebb6

IMPORT#422#eabb6

IMPORT#423#b9cc1

IMPORT#424#b3079

IMPORT#425#eae13

IMPORT#426#ca844

IMPORT#427#fa453

IMPORT#428#aae8b

IMPORT#429#e914c

IMPORT#430#aba2c

IMPORT#431#5428d

IMPORT#432#5bc06

IMPORT#433#e367a

IMPORT#434#e7f76

IMPORT#435#78458

IMPORT#436#78458

IMPORT#437#233dd

IMPORT#438#dcbb2

IMPORT#439#5bc06

IMPORT#440#e367a

IMPORT#441#8d9ea

IMPORT#442#e7f76

IMPORT#443#31067

IMPORT#444#233dd

IMPORT#445#5bc06

IMPORT#446#e367d

IMPORT#447#389c0

IMPORT#448#7c6fc

IMPORT#449#5bc06

IMPORT#450#e367b

IMPORT#451#8d9ee

IMPORT#452#e7376

IMPORT#453#6c44b

IMPORT#454#87c03

IMPORT#455#21f03

IMPORT#456#1e887

IMPORT#457#c1dad

IMPORT#458#3389c

IMPORT#459#e7406

IMPORT#460#652b7

IMPORT#461#f4067

IMPORT#462#7e3e0

IMPORT#463#233dd

IMPORT#464#5bc06

IMPORT#465#e367c

IMPORT#466#cc683

IMPORT#467#746ea

IMPORT#468#233dd

IMPORT#469#233dd

IMPORT#470#8cf74

IMPORT#471#50331

IMPORT#472#50084

IMPORT#473#e3f44

IMPORT#474#1e4ba

IMPORT#475#1e4be

IMPORT#476#5bc06

IMPORT#477#e367b

IMPORT#478#8d9ee

IMPORT#479#8cf74

IMPORT#480#233dd

IMPORT#481#cc1e4

IMPORT#482#cc1e4

IMPORT#483#4c7c0

IMPORT#484#4c7c0

IMPORT#485#becfd

IMPORT#486#becfd

IMPORT#487#3d9b6

IMPORT#488#3d9b6

IMPORT#489#becfd

IMPORT#490#becfd

IMPORT#491#3d9b6

IMPORT#492#3d9b6

IMPORT#493#1fc04

IMPORT#494#4c6fc

IMPORT#495#1fc04

IMPORT#496#1fc04

IMPORT#497#a5067

IMPORT#498#56067

IMPORT#499#56067

IMPORT#500#81f79

IMPORT#501#6c6d9

IMPORT#502#5ac43

IMPORT#503#6d64f

IMPORT#504#2c3ff

IMPORT#505#40211

IMPORT#506#40211

IMPORT#507#84621

IMPORT#508#8462d

IMPORT#509#845c4

IMPORT#510#84540

IMPORT#511#84001

IMPORT#512#84001

IMPORT#513#84dad

IMPORT#514#e84da

IMPORT#515#33dd0

IMPORT#516#33dd0

IMPORT#517#41eb4

IMPORT#518#41e74

IMPORT#519#aa402

IMPORT#520#9a402

IMPORT#521#c9b64

IMPORT#522#457df

IMPORT#523#1cc41

IMPORT#524#ec433

IMPORT#525#46563

IMPORT#526#8f340

IMPORT#527#d1fd4

IMPORT#528#d1fd6

IMPORT#529#b8582

IMPORT#530#7f40b

IMPORT#531#47f40

IMPORT#532#7f5d5

IMPORT#533#144f6

IMPORT#534#58e36

IMPORT#535#6586f

IMPORT#536#35842

IMPORT#537#3f477

IMPORT#538#e5b64

IMPORT#539#b8242

IMPORT#540#c3942

IMPORT#541#47057

IMPORT#542#b0fc8

IMPORT#543#afbd2

IMPORT#544#b740b

IMPORT#545#18c13

IMPORT#546#ef8d8

IMPORT#547#dc146

IMPORT#548#77402

IMPORT#549#ec322

IMPORT#550#ec321

IMPORT#551#747e0

IMPORT#552#c7341

IMPORT#553#bac3b

IMPORT#554#81ec9

IMPORT#555#747e2

IMPORT#556#c7341

IMPORT#557#bac39

IMPORT#558#1c482

IMPORT#559#76048

IMPORT#560#70e42

IMPORT#561#ec539

IMPORT#562#747e4

IMPORT#563#c7341

IMPORT#564#47021

IMPORT#565#8c391

IMPORT#566#bac3f

IMPORT#567#80ca9

IMPORT#568#51ad5

IMPORT#569#747e3

IMPORT#570#c7341

IMPORT#571#bac38

IMPORT#572#d1f44

IMPORT#573#47053

IMPORT#574#dd415

IMPORT#575#8c3e3

IMPORT#576#8f752

IMPORT#577#804c9

IMPORT#578#b8238

IMPORT#579#dc123

IMPORT#580#c3938

IMPORT#581#4e371

IMPORT#582#c9961

IMPORT#583#49961

IMPORT#584#e5961

IMPORT#585#586ed

IMPORT#586#d1fc7

IMPORT#587#77404

IMPORT#588#ef0eb

IMPORT#589#1b4bb

IMPORT#590#81b49

IMPORT#591#b49ef

IMPORT#592#35842

IMPORT#593#138ef

IMPORT#594#be63b

IMPORT#595#1ca2d

IMPORT#596#b4b53

IMPORT#597#a1757

IMPORT#598#41175

IMPORT#599#3a757

IMPORT#600#1fe22

IMPORT#601#1f052

IMPORT#602#d1f45

IMPORT#603#ec201

IMPORT#604#61182

IMPORT#605#47053

IMPORT#606#dd415

IMPORT#607#47040

IMPORT#608#8c3f0

IMPORT#609#8c3e3

IMPORT#610#d1f46

IMPORT#611#4232f

IMPORT#612#c132f

IMPORT#613#5eca5

IMPORT#614#b8463

IMPORT#615#6da6e

IMPORT#616#d1e46

IMPORT#617#c3f63

IMPORT#618#6ea6e

IMPORT#619#2b8d5

IMPORT#620#11820

IMPORT#621#e63bd

IMPORT#622#a4fd3

IMPORT#623#3ffd3

IMPORT#624#d3c33

IMPORT#625#d5757

IMPORT#626#44cb7

IMPORT#627#43130

IMPORT#628#b4078

IMPORT#629#cb740

IMPORT#630#ced90

IMPORT#631#dfc80

IMPORT#632#3fee2

IMPORT#633#fee21

IMPORT#634#1492a

IMPORT#635#88ba2

IMPORT#636#1e4bd

IMPORT#637#819f8

IMPORT#638#fad1c

IMPORT#639#43fc6

IMPORT#640#bb2d0

IMPORT#641#b4113

IMPORT#642#b4113

IMPORT#643#b6ecb

IMPORT#644#eadc0

IMPORT#645#23ea2

IMPORT#646#b88f2

IMPORT#647#6d402

IMPORT#648#c6941

IMPORT#649#c6941

IMPORT#650#d6048

IMPORT#651#c6941

IMPORT#652#c6941

IMPORT#653#b5415

IMPORT#654#5c123

IMPORT#655#49961

IMPORT#656#6d404

IMPORT#657#41175

IMPORT#658#b5415

IMPORT#659#5c146

IMPORT#660#e84da

IMPORT#661#2ee8e

IMPORT#662#83f47

IMPORT#663#960d9

IMPORT#664#10961

IMPORT#665#10961

IMPORT#666#6ea4f

IMPORT#667#92ea7

IMPORT#668#8ed92

IMPORT#669#1eb27

IMPORT#670#1a782

IMPORT#671#ce270

IMPORT#672#14bb1

IMPORT#673#4bd2b

IMPORT#674#4bd27

IMPORT#675#efc63

IMPORT#676#cce53

IMPORT#677#74ca5

IMPORT#678#32903

IMPORT#679#8f052

IMPORT#680#4765c

IMPORT#681#11d97

IMPORT#682#2bd34

IMPORT#683#3826d

IMPORT#684#fa1b5

IMPORT#685#9b421

IMPORT#686#970cf

IMPORT#687#cb46e

IMPORT#688#14e83

IMPORT#689#bdd9b

IMPORT#690#6e54b

IMPORT#691#8f1ad

IMPORT#692#2ef33

IMPORT#693#e2cb4

IMPORT#694#2dcf6

IMPORT#695#ced90

IMPORT#696#73de4

IMPORT#697#3db64

IMPORT#698#bbb2d

IMPORT#699#567b2

IMPORT#700#8a57d

IMPORT#701#4cb65

IMPORT#702#6e54c

IMPORT#703#886ac

IMPORT#704#8e629

IMPORT#705#1b506

IMPORT#706#d6be6

IMPORT#707#cabe5

IMPORT#708#f4776

IMPORT#709#d9707

IMPORT#710#11d97

IMPORT#711#4765c

IMPORT#712#38b0a

IMPORT#713#f5cf4

IMPORT#714#cc1e4

IMPORT#715#cae13

IMPORT#716#cc1e4

IMPORT#717#cc1e4

IMPORT#718#cc1e4

IMPORT#719#4052f

IMPORT#720#4052f

IMPORT#721#57b7c

IMPORT#722#78fb2

IMPORT#723#567b2

IMPORT#724#194ad

IMPORT#725#1d94a

IMPORT#726#1d94a

IMPORT#727#b6d95

IMPORT#728#f4af0

IMPORT#729#f49f0

IMPORT#730#52b4d

IMPORT#731#a66f5

IMPORT#732#ced90

IMPORT#733#dabb6

IMPORT#734#f6bb6

IMPORT#735#8a563

IMPORT#736#bd3f4

IMPORT#737#fabb6

IMPORT#738#fa453

IMPORT#739#eae8b

IMPORT#740#fa453

IMPORT#741#dae8b

IMPORT#742#5428e

IMPORT#743#5bc06

IMPORT#744#e367c

IMPORT#745#ddb76

IMPORT#746#346e5

IMPORT#747#5bc06

IMPORT#748#e367d

IMPORT#749#8d9f6

IMPORT#750#fb764

IMPORT#751#892e3

IMPORT#752#5bc06

IMPORT#753#e367c

IMPORT#754#2b4d3

IMPORT#755#54757

IMPORT#756#b04e3

IMPORT#757#5bc06

IMPORT#758#e3676

IMPORT#759#8d9da

IMPORT#760#5bc06

IMPORT#761#e367d

IMPORT#762#8d9f6

IMPORT#763#9c176

IMPORT#764#4ce8c

IMPORT#765#4ce8c

IMPORT#766#9d402

IMPORT#767#2aa8c

IMPORT#768#233dd

IMPORT#769#dd06a

IMPORT#770#8aba0

IMPORT#771#7df7d

IMPORT#772#23ea2

IMPORT#773#ff867

IMPORT#774#a66f5

IMPORT#775#66f56

IMPORT#776#99bd5

IMPORT#777#99bd5

IMPORT#778#96fff

IMPORT#779#33dd0

IMPORT#780#233dd

IMPORT#781#233dd

IMPORT#782#ed1db

IMPORT#783#76f04

IMPORT#784#bb476

IMPORT#785#76f04

IMPORT#786#bb476

IMPORT#787#8cf74

IMPORT#788#233dd

IMPORT#789#b153a

IMPORT#790#b774a

IMPORT#791#52ed8

IMPORT#792#13106

IMPORT#793#13106

IMPORT#794#31063

IMPORT#795#31063

IMPORT#796#7b432

IMPORT#797#78c45

IMPORT#798#32c19

IMPORT#799#cb13a

IMPORT#800#ec322

IMPORT#801#ec321

IMPORT#802#6ea6e

IMPORT#803#75646

IMPORT#804#40474

IMPORT#805#68404

IMPORT#806#40474

IMPORT#807#40474

IMPORT#808#dd06a

IMPORT#809#dd06a

IMPORT#810#54c6b

IMPORT#811#75744

IMPORT#812#ec653

IMPORT#813#233dd

IMPORT#814#54a2d

IMPORT#815#dd06a

IMPORT#816#233dd

IMPORT#817#233dd

IMPORT#818#c410b

IMPORT#819#c410b

IMPORT#820#ac322

IMPORT#821#ac321

IMPORT#822#c410b

IMPORT#823#ab46d

IMPORT#824#c410b

IMPORT#825#c6c41

IMPORT#826#c410b

IMPORT#827#42a80

IMPORT#828#ec322

IMPORT#829#ec321

IMPORT#830#6ea6e

IMPORT#831#72a46

IMPORT#832#ca218

IMPORT#833#17573

IMPORT#834#41175

IMPORT#835#17573

IMPORT#836#17573

IMPORT#837#2b052

IMPORT#838#fd1d9

IMPORT#839#fd1d9

IMPORT#840#fa453

IMPORT#841#dae8b

IMPORT#842#61182

IMPORT#843#2be22

IMPORT#844#72b45

IMPORT#845#233dd

IMPORT#846#233dd

IMPORT#847#ec322

IMPORT#848#ec321

IMPORT#849#1a246

IMPORT#850#9961b

IMPORT#851#49961

IMPORT#852#9961b

IMPORT#853#9961b

IMPORT#854#586ee

IMPORT#855#586ee

IMPORT#856#868c0

IMPORT#857#482c5

IMPORT#858#482c5

IMPORT#859#2c322

IMPORT#860#2c321

IMPORT#861#482c5

IMPORT#862#2dd46

IMPORT#863#482c4

IMPORT#864#86048

IMPORT#865#482c4

IMPORT#866#b7009

IMPORT#867#ec322

IMPORT#868#ec321

IMPORT#869#c4135

IMPORT#870#c6c41

IMPORT#871#c4135

IMPORT#872#c4135

IMPORT#873#4d4ec

IMPORT#874#4d4e0

IMPORT#875#a4255

IMPORT#876#34a46

IMPORT#877#34b44

IMPORT#878#c4121

IMPORT#879#c4121

IMPORT#880#ac322

IMPORT#881#ac321

IMPORT#882#c4121

IMPORT#883#20746

IMPORT#884#c6c41

IMPORT#885#2c322

IMPORT#886#2c321

IMPORT#887#8c546

IMPORT#888#1238d

IMPORT#889#1c123

IMPORT#890#1238d

IMPORT#891#1238d

IMPORT#892#8e372

IMPORT#893#8e372

IMPORT#894#e3100

IMPORT#895#ac322

IMPORT#896#ac321

IMPORT#897#43346

IMPORT#898#c4142

IMPORT#899#c6c41

IMPORT#900#c4142

IMPORT#901#c4142

IMPORT#902#50aac

IMPORT#903#50aa0

IMPORT#904#1050a

IMPORT#905#1050a

IMPORT#906#50c80

IMPORT#907#14630

IMPORT#908#14630

IMPORT#909#ac322

IMPORT#910#ac321

IMPORT#911#14630

IMPORT#912#31b46

IMPORT#913#1c146

IMPORT#914#ec322

IMPORT#915#ec321

IMPORT#916#c6104

IMPORT#917#33346

IMPORT#918#33246

IMPORT#919#41532

IMPORT#920#a1415

IMPORT#921#41532

IMPORT#922#41532

IMPORT#923#233dd

IMPORT#924#33dd0

IMPORT#925#7f205

IMPORT#926#233dd

IMPORT#927#233dd

IMPORT#928#8cf74

IMPORT#929#f7419

IMPORT#930#b1ac1

IMPORT#931#f36b8

IMPORT#932#61a7f

IMPORT#933#cbec9

IMPORT#934#5eca5

IMPORT#935#4232f

IMPORT#936#c132f

IMPORT#937#6c322

IMPORT#938#6c321

IMPORT#939#4153d

IMPORT#940#a1415

IMPORT#941#4153d

IMPORT#942#4153d

IMPORT#943#54f76

IMPORT#944#54f76

IMPORT#945#4f140

IMPORT#946#1a04c

IMPORT#947#3c446

IMPORT#948#3c446

IMPORT#949#952ae

IMPORT#950#952ae

IMPORT#951#1257a

IMPORT#952#952ae

IMPORT#953#952ae

IMPORT#954#952ae

IMPORT#955#54abc

IMPORT#956#54abc

IMPORT#957#2a20f

IMPORT#958#52ac1

IMPORT#959#1b0bf

IMPORT#960#4aac6

IMPORT#961#4aac0

IMPORT#962#19c71

IMPORT#963#1cb58

IMPORT#964#18804

IMPORT#965#91b95

IMPORT#966#1b952

IMPORT#967#2fa33

IMPORT#968#385b5

IMPORT#969#385b5

IMPORT#970#91b95

IMPORT#971#2451b

IMPORT#972#ed237

IMPORT#973#51ba5

IMPORT#974#20cad

IMPORT#975#1c7df

IMPORT#976#67c86

IMPORT#977#9f25d

IMPORT#978#567c5

IMPORT#979#1f567

IMPORT#980#666db

IMPORT#981#7d591

IMPORT#982#47d59

IMPORT#983#5bc06

IMPORT#984#e367a

IMPORT#985#8d9ea

IMPORT#986#233dd

IMPORT#987#c7eaa

IMPORT#988#1b952

IMPORT#989#91b95

IMPORT#990#91b95

IMPORT#991#8071f

IMPORT#992#b46e5

IMPORT#993#69a69

IMPORT#994#b63da

IMPORT#995#878e5

IMPORT#996#1d835

IMPORT#997#bfd54

IMPORT#998#ba843

IMPORT#999#878e5

IMPORT#1000#4b40

IMPORT#1001#5d40

IMPORT#1002#5518

IMPORT#1003#44da

IMPORT#1004#3cda

IMPORT#1005#778e

IMPORT#1006#92af

IMPORT#1007#affd

IMPORT#1008#a353

IMPORT#1009#362f

IMPORT#1010#eae1

IMPORT#1011#3ebb

IMPORT#1012#f2bb

IMPORT#1013#e3f4

IMPORT#1014#a22e

IMPORT#1015#3d5b

IMPORT#1016#f906

IMPORT#1017#eaed

IMPORT#1018#bddc

IMPORT#1019#f2bb

IMPORT#1020#4af4

IMPORT#1021#f6bb

IMPORT#1022#ae8e

IMPORT#1023#bddc

IMPORT#1024#ceea

IMPORT#1025#ae8e

IMPORT#1026#1863

IMPORT#1027#e3f4

IMPORT#1028#e89d

IMPORT#1029#affd

IMPORT#1030#affd

IMPORT#1031#ae8e

IMPORT#1032#5428

IMPORT#1033#ad8e

IMPORT#1034#bddc

IMPORT#1035#50ea

IMPORT#1036#b732

IMPORT#1037#5d40

IMPORT#1038#83ef

IMPORT#1039#1297

IMPORT#1040#e3f4

IMPORT#1041#e3f4

IMPORT#1042#5bc0

IMPORT#1043#e360

IMPORT#1044#f677

IMPORT#1045#44ef

IMPORT#1046#83ef

IMPORT#1047#1e4b

IMPORT#1048#5bc0

IMPORT#1049#e360

IMPORT#1050#8d83

IMPORT#1051#e3f4

IMPORT#1052#3570

IMPORT#1053#30aa

IMPORT#1054#e835

IMPORT#1055#d4e8

IMPORT#1056#e835

IMPORT#1057#6431

IMPORT#1058#1ec1

IMPORT#1059#1ec1

IMPORT#1060#2b24

IMPORT#1061#2724

IMPORT#1062#ac91

IMPORT#1063#9c91

IMPORT#1064#2461

IMPORT#1065#2461

IMPORT#1066#c18b

IMPORT#1067#1abc

IMPORT#1068#f56f

IMPORT#1069#cc1e

IMPORT#1070#aaba

IMPORT#1071#793e

IMPORT#1072#fa45

IMPORT#1073#8ae8

IMPORT#1074#5428

IMPORT#1075#1e4c

IMPORT#1076#1e4c

IMPORT#1077#e3f4

IMPORT#1078#8eea

IMPORT#1079#233d

IMPORT#1080#5bc0

IMPORT#1081#e367

IMPORT#1082#b48a

IMPORT#1083#d9ad

IMPORT#1084#f7d7

IMPORT#1085#8fd1

IMPORT#1086#fdf5

IMPORT#1087#e38a

IMPORT#1088#59fc

IMPORT#1089#2c77

IMPORT#1090#9ff0

IMPORT#1091#5428

IMPORT#1092#233d

IMPORT#1093#aa7c

IMPORT#1094#1d40

IMPORT#1095#233d

IMPORT#1096#8cf7

IMPORT#1097#33dd

IMPORT#1098#8cf7

IMPORT#1099#233d

IMPORT#1100#cc1e

IMPORT#1101#f56f

IMPORT#1102#b2e6

IMPORT#1103#3de7

IMPORT#1104#9c20

IMPORT#1105#a708

IMPORT#1106#7bd2

IMPORT#1107#e98d

IMPORT#1108#984f

IMPORT#1109#34c1

IMPORT#1110#9d30

IMPORT#1111#6c6d

IMPORT#1112#70a0

IMPORT#1113#404b

IMPORT#1114#1343

IMPORT#1115#db0c

IMPORT#1116#7b3f

IMPORT#1117#7b3f

IMPORT#1118#d41e

IMPORT#1119#db0d

IMPORT#1120#6c34

IMPORT#1121#98a8

IMPORT#1122#da4d

IMPORT#1123#e03f

IMPORT#1124#3065

IMPORT#1125#f5cb

IMPORT#1126#b3f8

IMPORT#1127#91e4

IMPORT#1128#4f7c

IMPORT#1129#35e4

IMPORT#1130#7c57

IMPORT#1131#c7b2

IMPORT#1132#c7b2

IMPORT#1133#de0e

IMPORT#1134#b3f7

IMPORT#1135#b3f7

IMPORT#1136#b3f7

IMPORT#1137#6507

IMPORT#1138#b3f7

IMPORT#1139#7b3f

IMPORT#1140#b3f7

IMPORT#1141#2c50

IMPORT#1142#7b3f

IMPORT#1143#7b3f

IMPORT#1144#5a75

IMPORT#1145#5a6a

IMPORT#1146#5a64

IMPORT#1147#37e0

IMPORT#1148#900d

IMPORT#1149#df9d

IMPORT#1150#e750

IMPORT#1151#bb0e

IMPORT#1152#edf9

IMPORT#1153#33c3

IMPORT#1154#a8d4

IMPORT#1155#4127

IMPORT#1156#1a19

IMPORT#1157#121c

IMPORT#1158#6df5

IMPORT#1159#9b75

IMPORT#1160#b20c

IMPORT#1161#1b1f

IMPORT#1162#a7cc

IMPORT#1163#9f32

IMPORT#1164#d585

IMPORT#1165#1bd5

IMPORT#1166#5846

IMPORT#1167#6f56

IMPORT#1168#46f5

IMPORT#1169#4c5b

IMPORT#1170#6990

IMPORT#1171#394c

IMPORT#1172#3296

IMPORT#1173#cf29

IMPORT#1174#9c04

IMPORT#1175#fe86

IMPORT#1176#7015

IMPORT#1177#15b5

IMPORT#1178#9633

IMPORT#1179#3354

IMPORT#1180#94ca

IMPORT#1181#94ca

IMPORT#1182#94ca

IMPORT#1183#94ca

IMPORT#1184#94ca

IMPORT#1185#d4e8

IMPORT#1186#21c1

IMPORT#1187#3827

IMPORT#1188#21c1

IMPORT#1189#1827

IMPORT#1190#9902

IMPORT#1191#9c02

IMPORT#1192#1037

IMPORT#1193#5699

IMPORT#1194#5699

IMPORT#1195#1169

IMPORT#1196#eae1

IMPORT#1197#5699

IMPORT#1198#5699

IMPORT#1199#45a6

IMPORT#1200#6c31

IMPORT#1201#9b55

IMPORT#1202#1169

IMPORT#1203#a708

IMPORT#1204#69a6

IMPORT#1205#842d

IMPORT#1206#45a7

IMPORT#1207#c91b

IMPORT#1208#cadb

IMPORT#1209#46d5

IMPORT#1210#b6d5

IMPORT#1211#493e

IMPORT#1212#493e

IMPORT#1213#4524

IMPORT#1214#24f8

IMPORT#1215#ba31

IMPORT#1216#24f9

IMPORT#1217#ba31

IMPORT#1218#493e

IMPORT#1219#493e

IMPORT#1220#493f

IMPORT#1221#4524

IMPORT#1222#24fb

IMPORT#1223#ba31

IMPORT#1224#24ff

IMPORT#1225#ba31

IMPORT#1226#493e

@unixroot/usr/share/doc/qpdf/qpdf-manual.html
QPDF Manual

For QPDF Version 6.0.0, November 10, 2015

Jay Berkenbilt

Copyright © 2005–2015 Jay Berkenbilt

Table of Contents

		General Information

		1. What is QPDF?

		2. Building and Installing QPDF

				2.1. System Requirements

		2.2. Build Instructions

		3. Running QPDF

				3.1. Basic Invocation

		3.2. Basic Options

		3.3. Encryption Options

		3.4. Page Selection Options

		3.5. Advanced Transformation Options

		3.6. Testing, Inspection, and Debugging Options

		4. QDF Mode

		5. Using the QPDF Library

		6. Design and Library Notes

				6.1. Introduction

		6.2. Design Goals

		6.3. Casting Policy

		6.4. Encryption

		6.5. Random Number Generation

		6.6. Adding and Removing Pages

		6.7. Reserving Object Numbers

		6.8. Copying Objects From Other PDF Files

		6.9. Writing PDF Files

		6.10. Filtered Streams

		7. Linearization

				7.1. Basic Strategy for Linearization

		7.2. Preparing For Linearization

		7.3. Optimization

		7.4. Writing Linearized Files

		7.5. Calculating Linearization Data

		7.6. Known Issues with Linearization

		7.7. Debugging Note

		8. Object and Cross-Reference Streams

				8.1. Object Streams

		8.2. Cross-Reference Streams

				8.2.1. Cross-Reference Stream Data

		8.3. Implications for Linearized Files

		8.4. Implementation Notes

		A. Release Notes

		B. Upgrading from 2.0 to 2.1

		C. Upgrading to 3.0

		D. Upgrading to 4.0

General Information

 QPDF is a program that does structural, content-preserving
 transformations on PDF files. QPDF's website is located at http://qpdf.sourceforge.net/.
 QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

 QPDF has been released under the terms of Version
 2.0 of the Artistic License, a copy of which appears in the
 file Artistic-2.0 in the source distribution.

 QPDF was originally created in 2001 and modified periodically
 between 2001 and 2005 during my employment at Apex CoVantage. Upon my
 departure from Apex, the company graciously allowed me to take
 ownership of the software and continue maintaining as an open
 source project, a decision for which I am very grateful. I have
 made considerable enhancements to it since that time. I feel
 fortunate to have worked for people who would make such a decision.
 This work would not have been possible without their support.

Chapter 1. What is QPDF?

 QPDF is a program that does structural, content-preserving
 transformations on PDF files. It could have been called something
 like pdf-to-pdf. It also provides many useful
 capabilities to developers of PDF-producing software or for people
 who just want to look at the innards of a PDF file to learn more
 about how they work.

 With QPDF, it is possible to copy objects from one PDF file into
 another and to manipulate the list of pages in a PDF file. This
 makes it possible to merge and split PDF files. The QPDF library
 also makes it possible for you to create PDF files from scratch.
 In this mode, you are responsible for supplying all the contents of
 the file, while the QPDF library takes care off all the syntactical
 representation of the objects, creation of cross references tables
 and, if you use them, object streams, encryption, linearization,
 and other syntactic details. You are still responsible for
 generating PDF content on your own.

 QPDF has been designed with very few external dependencies, and it
 is intentionally very lightweight. QPDF is
 not a PDF content creation library, a PDF
 viewer, or a program capable of converting PDF into other formats.
 In particular, QPDF knows nothing about the semantics of PDF
 content streams. If you are looking for something that can do
 that, you should look elsewhere. However, once you have a valid
 PDF file, QPDF can be used to transform that file in ways perhaps
 your original PDF creation can't handle. For example, many
 programs generate simple PDF files but can't password-protect them,
 web-optimize them, or perform other transformations of that type.

Chapter 2. Building and Installing QPDF

Table of Contents

		2.1. System Requirements

		2.2. Build Instructions

 This chapter describes how to build and install qpdf. Please see
 also the README and
 INSTALL files in the source distribution.

2.1. System Requirements

 The qpdf package has relatively few external dependencies. In
 order to build qpdf, the following packages are required:

		
 zlib: http://www.zlib.net/

		
 pcre: http://www.pcre.org/

		
 gnu make 3.81 or newer: http://www.gnu.org/software/make

		
 perl version 5.8 or newer:
 http://www.perl.org/;
 required for fix-qdf and the test suite.

		
 GNU diffutils (any version): http://www.gnu.org/software/diffutils/
 is required to run the test suite. Note that this is the
 version of diff present on virtually all GNU/Linux systems.
 This is required because the test suite uses diff
 -u.

		
 A C++ compiler that works well with STL and has the long
 long type. Most modern C++ compilers should fit the
 bill fine. QPDF is tested with gcc and Microsoft Visual C++.

 Part of qpdf's test suite does comparisons of the contents PDF
 files by converting them images and comparing the images. The
 image comparison tests are disabled by default. Those tests are
 not required for determining correctness of a qpdf build if you
 have not modified the code since the test suite also contains
 expected output files that are compared literally. The image
 comparison tests provide an extra check to make sure that any
 content transformations don't break the rendering of pages.
 Transformations that affect the content streams themselves are off
 by default and are only provided to help developers look into the
 contents of PDF files. If you are making deep changes to the
 library that cause changes in the contents of the files that qpdf
 generates, then you should enable the image comparison tests.
 Enable them by running configure with the
 --enable-test-compare-images flag. If you enable
 this, the following additional requirements are required by the
 test suite. Note that in no case are these items required to use
 qpdf.

		
 libtiff: http://www.remotesensing.org/libtiff/

		
 GhostScript version 8.60 or newer: http://www.ghostscript.com

 If you do not enable this, then you do not need to have tiff and
 ghostscript.

 If Adobe Reader is installed as acroread, some
 additional test cases will be enabled. These test cases simply
 verify that Adobe Reader can open the files that qpdf creates.
 They require version 8.0 or newer to pass. However, in order to
 avoid having qpdf depend on non-free (as in liberty) software, the
 test suite will still pass without Adobe reader, and the test
 suite still exercises the full functionality of the software.

 Pre-built documentation is distributed with qpdf, so you should
 generally not need to rebuild the documentation. In order to
 build the documentation from its docbook sources, you need the
 docbook XML style sheets (http://downloads.sourceforge.net/docbook/).
 To build the PDF version of the documentation, you need Apache fop
 (http://xml.apache.org/fop/)
 version 0.94 or higher.

2.2. Build Instructions

 Building qpdf on UNIX is generally just a matter of running

./configure
make

 You can also run make check to run the test
 suite and make install to install. Please run
 ./configure --help for options on what can be
 configured. You can also set the value of
 DESTDIR during installation to install to a
 temporary location, as is common with many open source packages.
 Please see also the README and
 INSTALL files in the source distribution.

 Building on Windows is a little bit more complicated. For
 details, please see README-windows.txt in the
 source distribution. You can also download a binary distribution
 for Windows. There is a port of qpdf to Visual C++ version 6 in
 the contrib area generously contributed by
 Jian Ma. This is also discussed in more detail in
 README-windows.txt.

 There are some other things you can do with the build. Although
 qpdf uses autoconf, it does not use
 automake but instead uses a
 hand-crafted non-recursive Makefile that requires gnu make. If
 you're really interested, please read the comments in the
 top-level Makefile.

Chapter 3. Running QPDF

Table of Contents

		3.1. Basic Invocation

		3.2. Basic Options

		3.3. Encryption Options

		3.4. Page Selection Options

		3.5. Advanced Transformation Options

		3.6. Testing, Inspection, and Debugging Options

 This chapter describes how to run the qpdf program from the command
 line.

3.1. Basic Invocation

 When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

 This converts PDF file infilename to PDF file
 outfilename. The output file is functionally
 identical to the input file but may have been structurally
 reorganized. Also, orphaned objects will be removed from the
 file. Many transformations are available as controlled by the
 options below. In place of infilename, the
 parameter --empty may be specified. This causes
 qpdf to use a dummy input file that contains zero pages. The only
 normal use case for using --empty would be if you
 were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”.

 outfilename does not have to be seekable, even
 when generating linearized files. Specifying
 “--” as outfilename
 means to write to standard output. However, you can't specify the
 same file as both the input and the output because qpdf reads data
 from the input file as it writes to the output file.

 Most options require an output file, but some testing or
 inspection commands do not. These are specifically noted.

3.2. Basic Options

 The following options are the most common ones and perform
 commonly needed transformations.

		--password=password

		
 Specifies a password for accessing encrypted files.

		--linearize

		
 Causes generation of a linearized (web-optimized) output file.

		--copy-encryption=file

		
 Encrypt the file using the same encryption parameters,
 including user and owner password, as the specified file. Use
 --encrypt-file-password to specify a password
 if one is needed to open this file. Note that copying the
 encryption parameters from a file also copies the first half
 of /ID from the file since this is part of
 the encryption parameters.

		--encrypt-file-password=password

		
 If the file specified with --copy-encryption
 requires a password, specify the password using this option.
 Note that only one of the user or owner password is required.
 Both passwords will be preserved since QPDF does not
 distinguish between the two passwords. It is possible to
 preserve encryption parameters, including the owner password,
 from a file even if you don't know the file's owner password.

		--encrypt options --

		
 Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options” for details on how to
 specify encryption parameters.

		--decrypt

		
 Removes any encryption on the file. A password must be
 supplied if the file is password protected.

		--pages options --

		
 Select specific pages from one or more input files. See Section 3.4, “Page Selection Options” for details on how to do page
 selection (splitting and merging).

 Password-protected files may be opened by specifying a password.
 By default, qpdf will preserve any encryption data associated with
 a file. If --decrypt is specified, qpdf will
 attempt to remove any encryption information. If
 --encrypt is specified, qpdf will replace the
 document's encryption parameters with whatever is specified.

 Note that qpdf does not obey encryption restrictions already
 imposed on the file. Doing so would be meaningless since qpdf can
 be used to remove encryption from the file entirely. This
 functionality is not intended to be used for bypassing copyright
 restrictions or other restrictions placed on files by their
 producers.

 In all cases where qpdf allows specification of a password, care
 must be taken if the password contains characters that fall
 outside of the 7-bit US-ASCII character range to ensure that the
 exact correct byte sequence is provided. It is possible that a
 future version of qpdf may handle this more gracefully. For
 example, if a password was encrypted using a password that was
 encoded in ISO-8859-1 and your terminal is configured to use
 UTF-8, the password you supply may not work properly. There are
 various approaches to handling this. For example, if you are
 using Linux and have the iconv executable (part of the ICU
 package) installed, you could pass --password=`echo
 password | iconv -t
 iso-8859-1` to qpdf where
 password is a password specified in
 your terminal's locale. A detailed discussion of this is out of
 scope for this manual, but just be aware of this issue if you have
 trouble with a password that contains 8-bit characters.

3.3. Encryption Options

 To change the encryption parameters of a file, use the --encrypt
 flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

 Note that “--” terminates parsing of
 encryption flags and must be present even if no restrictions are
 present.

 Either or both of the user password and the owner password may be
 empty strings.

 The value for
 key-length may be 40,
 128, or 256. The restriction flags are dependent upon key length.
 When no additional restrictions are given, the default is to be
 fully permissive.

 If key-length is 40,
 the following restriction options are available:

		--print=[yn]

		
 Determines whether or not to allow printing.

		--modify=[yn]

		
 Determines whether or not to allow document modification.

		--extract=[yn]

		
 Determines whether or not to allow text/image extraction.

		--annotate=[yn]

		
 Determines whether or not to allow comments and form fill-in
 and signing.

 If key-length is 128,
 the following restriction options are available:

		--accessibility=[yn]

		
 Determines whether or not to allow accessibility to visually
 impaired.

		--extract=[yn]

		
 Determines whether or not to allow text/graphic extraction.

		--print=print-opt

		
 Controls printing access.
 print-opt may be
 one of the following:

		
 full: allow full printing

		
 low: allow low-resolution printing only

		
 none: disallow printing

		--modify=modify-opt

		
 Controls modify access.
 modify-opt may be
 one of the following, each of which implies all the options
 that follow it:

		
 all: allow full document modification

		
 annotate: allow comment authoring and form operations

		
 form: allow form field fill-in and signing

		
 assembly: allow document assembly only

		
 none: allow no modifications

		--cleartext-metadata

		
 If specified, any metadata stream in the document will be left
 unencrypted even if the rest of the document is encrypted.
 This also forces the PDF version to be at least 1.5.

		--use-aes=[yn]

		
 If --use-aes=y is specified, AES encryption
 will be used instead of RC4 encryption. This forces the PDF
 version to be at least 1.6.

		--force-V4

		
 Use of this option forces the /V and
 /R parameters in the document's encryption
 dictionary to be set to the value 4. As
 qpdf will automatically do this when required, there is no
 reason to ever use this option. It exists primarily for use
 in testing qpdf itself. This option also forces the PDF
 version to be at least 1.5.

 If key-length is 256,
 the minimum PDF version is 1.7 with extension level 8, and the
 AES-based encryption format used is the PDF 2.0 encryption method
 supported by Acrobat X. the same options are available as with
 128 bits with the following exceptions:

		--use-aes

		
 This option is not available with 256-bit keys. AES is always
 used with 256-bit encryption keys.

		--force-V4

		
 This option is not available with 256 keys.

		--force-R5

		
 If specified, qpdf sets the minimum version to 1.7 at
 extension level 3 and writes the deprecated encryption format
 used by Acrobat version IX. This option should not be used in
 practice to generate PDF files that will be in general use,
 but it can be useful to generate files if you are trying to
 test proper support in another application for PDF files
 encrypted in this way.

 The default for each permission option is to be fully permissive.

3.4. Page Selection Options

 Starting with qpdf 3.0, it is possible to split and merge PDF
 files by selecting pages from one or more input files. Whatever
 file is given as the primary input file is used as the starting
 point, but its pages are replaced with pages as specified.

--pages input-file [--password=password] [page-range] [...] --

 Multiple input files may be specified. Each one is given as the
 name of the input file, an optional password (if required to open
 the file), and the range of pages. Note that
 “--” terminates parsing of page
 selection flags.

 For each file that pages should be taken from, specify the file, a
 password needed to open the file (if any), and a page range. The
 password needs to be given only once per file. If any of the
 input files are the same as the primary input file or the file
 used to copy encryption parameters (if specified), you do not need
 to repeat the password here. The same file can be repeated
 multiple times. If a file that is repeated has a password, the
 password only has to be given the first time. All non-page data
 (info, outlines, page numbers, etc.) are taken from the primary
 input file. To discard these, use --empty as the
 primary input.

 Starting with qpdf 5.0.0, it is possible to omit the page range.
 If qpdf sees a value in the place where it expects a page range
 and that value is not a valid range but is a valid file name, qpdf
 will implicitly use the range 1-z, meaning that
 it will include all pages in the file. This makes it possible to
 easily combine all pages in a set of files with a command like
 qpdf --empty out.pdf --pages *.pdf --.

 It is not presently possible to specify the same page from the
 same file directly more than once, but you can make this work by
 specifying two different paths to the same file (such as by
 putting ./ somewhere in the path). This can
 also be used if you want to repeat a page from one of the input
 files in the output file. This may be made more convenient in a
 future version of qpdf if there is enough demand for this feature.

 The page range is a set of numbers separated by commas, ranges of
 numbers separated dashes, or combinations of those. The character
 “z” represents the last page. Pages can appear in any
 order. Ranges can appear with a high number followed by a low
 number, which causes the pages to appear in reverse. Repeating a
 number will cause an error, but you can use the workaround
 discussed above should you really want to include the same page
 twice.

 Example page ranges:

		
 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8,
 9, 15, 14, 13, and 12.

		
 z-1: all pages in the document in reverse

 Note that qpdf doesn't presently do anything special about other
 constructs in a PDF file that may know about pages, so semantics
 of splitting and merging vary across features. For example, the
 document's outlines (bookmarks) point to actual page objects, so
 if you select some pages and not others, bookmarks that point to
 pages that are in the output file will work, and remaining
 bookmarks will not work. On the other hand, page labels (page
 numbers specified in the file) are just sequential, so page labels
 will be messed up in the output file. A future version of
 qpdf may do a better job at handling these
 issues. (Note that the qpdf library already contains all of the
 APIs required in order to implement this in your own application
 if you need it.) In the mean time, you can always use
 --empty as the primary input file to avoid
 copying all of that from the first file. For example, to take
 pages 1 through 5 from a infile.pdf while
 preserving all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

 If you wanted pages 1 through 5 from
 infile.pdf but you wanted the rest of the
 metadata to be dropped, you could instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

 If you wanted to take pages 1–5 from
 file1.pdf and pages 11–15 from
 file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

 If, for some reason, you wanted to take the first page of an
 encrypted file called encrypted.pdf with
 password pass and repeat it twice in an output
 file, and if you wanted to drop metadata (like page numbers and
 outlines) but preserve encryption, you would use

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

 Note that we had to specify the password all three times because
 giving a password as --encryption-file-password
 doesn't count for page selection, and as far as qpdf is concerned,
 encrypted.pdf and
 ./encrypted.pdf are separated files. These
 are all corner cases that most users should hopefully never have
 to be bothered with.

3.5. Advanced Transformation Options

 These transformation options control fine points of how qpdf
 creates the output file. Mostly these are of use only to people
 who are very familiar with the PDF file format or who are PDF
 developers. The following options are available:

		--stream-data=option

		
 Controls transformation of stream data. The value of
 option may be one
 of the following:

		
 compress: recompress stream data when
 possible (default)

		
 preserve: leave all stream data as is

		
 uncompress: uncompress stream data when
 possible

		--normalize-content=[yn]

		
 Enables or disables normalization of content streams.

		--suppress-recovery

		
 Prevents qpdf from attempting to recover damaged files.

		--object-streams=mode

		
 Controls handling of object streams. The value of
 mode may be one of
 the following:

		
 preserve: preserve original object streams
 (default)

		
 disable: don't write any object streams

		
 generate: use object streams wherever
 possible

		--ignore-xref-streams

		
 Tells qpdf to ignore any cross-reference streams.

		--qdf

		
 Turns on QDF mode. For additional information on QDF, please
 see Chapter 4, QDF Mode.

		--min-version=version

		
 Forces the PDF version of the output file to be at least
 version. In other words, if the
 input file has a lower version than the specified version, the
 specified version will be used. If the input file has a
 higher version, the input file's original version will be
 used. It is seldom necessary to use this option since qpdf
 will automatically increase the version as needed when adding
 features that require newer PDF readers.

 The version number may be expressed in the form
 major.minor.extension-level, in
 which case the version is interpreted as
 major.minor at extension level
 extension-level. For example,
 version 1.7.8 represents version 1.7 at
 extension level 8. Note that minimal syntax checking is done
 on the command line.

		--force-version=version

		
 This option forces the PDF version to be the exact version
 specified even when the file may have content that
 is not supported in that version. The version
 number is interpreted in the same way as with
 --min-version so that extension levels can be
 set. In some cases, forcing the output file's PDF version to
 be lower than that of the input file will cause qpdf to
 disable certain features of the document. Specifically,
 256-bit keys are disabled if the version is less than 1.7 with
 extension level 8 (except R5 is disabled if less than 1.7 with
 extension level 3), AES encryption is disabled if the version
 is less than 1.6, cleartext metadata and object streams are
 disabled if less than 1.5, 128-bit encryption keys are
 disabled if less than 1.4, and all encryption is disabled if
 less than 1.3. Even with these precautions, qpdf won't be
 able to do things like eliminate use of newer image
 compression schemes, transparency groups, or other features
 that may have been added in more recent versions of PDF.

 As a general rule, with the exception of big structural things
 like the use of object streams or AES encryption, PDF viewers
 are supposed to ignore features in files that they don't
 support from newer versions. This means that forcing the
 version to a lower version may make it possible to open your
 PDF file with an older version, though bear in mind that some
 of the original document's functionality may be lost.

 By default, when a stream is encoded using non-lossy filters that
 qpdf understands and is not already compressed using a good
 compression scheme, qpdf will uncompress and recompress streams.
 Assuming proper filter implements, this is safe and generally
 results in smaller files. This behavior may also be explicitly
 requested with --stream-data=compress.

 When --stream-data=preserve is specified, qpdf
 will never attempt to change the filtering of any stream data.

 When --stream-data=uncompress is specified, qpdf
 will attempt to remove any non-lossy filters that it supports.
 This includes /FlateDecode,
 /LZWDecode, /ASCII85Decode,
 and /ASCIIHexDecode. This can be very useful
 for inspecting the contents of various streams.

 When --normalize-content=y is specified, qpdf
 will attempt to normalize whitespace and newlines in page content
 streams. This is generally safe but could, in some cases, cause
 damage to the content streams. This option is intended for people
 who wish to study PDF content streams or to debug PDF content.
 You should not use this for “production” PDF files.

 Ordinarily, qpdf will attempt to recover from certain types of
 errors in PDF files. These include errors in the cross-reference
 table, certain types of object numbering errors, and certain types
 of stream length errors. Sometimes, qpdf may think it has
 recovered but may not have actually recovered, so care should be
 taken when using this option as some data loss is possible. The
 --suppress-recovery option will prevent qpdf from
 attempting recovery. In this case, it will fail on the first
 error that it encounters.

 Object streams, also known as compressed objects, were introduced
 into the PDF specification at version 1.5, corresponding to
 Acrobat 6. Some older PDF viewers may not support files with
 object streams. qpdf can be used to transform files with object
 streams to files without object streams or vice versa. As
 mentioned above, there are three object stream modes:
 preserve, disable, and
 generate.

 In preserve mode, the relationship to objects and
 the streams that contain them is preserved from the original file.
 In disable mode, all objects are written as
 regular, uncompressed objects. The resulting file should be
 readable by older PDF viewers. (Of course, the content of the
 files may include features not supported by older viewers, but at
 least the structure will be supported.) In
 generate mode, qpdf will create its own object
 streams. This will usually result in more compact PDF files,
 though they may not be readable by older viewers. In this mode,
 qpdf will also make sure the PDF version number in the header is
 at least 1.5.

 Ordinarily, qpdf reads cross-reference streams when they are
 present in a PDF file. If --ignore-xref-streams
 is specified, qpdf will ignore any cross-reference streams for
 hybrid PDF files. The purpose of hybrid files is to make some
 content available to viewers that are not aware of cross-reference
 streams. It is almost never desirable to ignore them. The only
 time when you might want to use this feature is if you are testing
 creation of hybrid PDF files and wish to see how a PDF consumer
 that doesn't understand object and cross-reference streams would
 interpret such a file.

 The --qdf flag turns on QDF mode, which changes
 some of the defaults described above. Specifically, in QDF mode,
 by default, stream data is uncompressed, content streams are
 normalized, and encryption is removed. These defaults can still
 be overridden by specifying the appropriate options as described
 above. Additionally, in QDF mode, stream lengths are stored as
 indirect objects, objects are laid out in a less efficient but
 more readable fashion, and the documents are interspersed with
 comments that make it easier for the user to find things and also
 make it possible for fix-qdf to work properly.
 QDF mode is intended for people, mostly developers, who wish to
 inspect or modify PDF files in a text editor. For details, please
 see Chapter 4, QDF Mode.

3.6. Testing, Inspection, and Debugging Options

 These options can be useful for digging into PDF files or for use
 in automated test suites for software that uses the qpdf library.
 When any of the options in this section are specified, no output
 file should be given. The following options are available:

		--deterministic-id

		
 Causes generation of a deterministic value for /ID. This
 prevents use of timestamp and output file name information in
 the /ID generation. Instead, at some slight additional runtime
 cost, the /ID field is generated to include a digest of the
 significant parts of the content of the output PDF file. This
 means that a given qpdf operation should generate the same /ID
 each time it is run, which can be useful when caching results
 or for generation of some test data. Use of this flag is not
 compatible with creation of encrypted files.

		--static-id

		
 Causes generation of a fixed value for /ID. This is intended
 for testing only. Never use it for production files. If you
 are trying to get the same /ID each time for a given file and
 you are not generating encrypted files, consider using the
 --deterministic-id option.

		--static-aes-iv

		
 Causes use of a static initialization vector for AES-CBC.
 This is intended for testing only so that output files can be
 reproducible. Never use it for production files. This option
 in particular is not secure since it significantly weakens the
 encryption.

		--no-original-object-ids

		
 Suppresses inclusion of original object ID comments in QDF
 files. This can be useful when generating QDF files for test
 purposes, particularly when comparing them to determine
 whether two PDF files have identical content.

		--show-encryption

		
 Shows document encryption parameters. Also shows the
 document's user password if the owner password is given.

		--check-linearization

		
 Checks file integrity and linearization status.

		--show-linearization

		
 Checks and displays all data in the linearization hint tables.

		--show-xref

		
 Shows the contents of the cross-reference table in a
 human-readable form. This is especially useful for files with
 cross-reference streams which are stored in a binary format.

		--show-object=obj[,gen]

		
 Show the contents of the given object. This is especially
 useful for inspecting objects that are inside of object
 streams (also known as “compressed objects”).

		--raw-stream-data

		
 When used along with the --show-object
 option, if the object is a stream, shows the raw stream data
 instead of object's contents.

		--filtered-stream-data

		
 When used along with the --show-object
 option, if the object is a stream, shows the filtered stream
 data instead of object's contents. If the stream is filtered
 using filters that qpdf does not support, an error will be
 issued.

		--show-npages

		
 Prints the number of pages in the input file on a line by
 itself. Since the number of pages appears by itself on a
 line, this option can be useful for scripting if you need to
 know the number of pages in a file.

		--show-pages

		
 Shows the object and generation number for each page
 dictionary object and for each content stream associated with
 the page. Having this information makes it more convenient to
 inspect objects from a particular page.

		--with-images

		
 When used along with --show-pages, also shows
 the object and generation numbers for the image objects on
 each page. (At present, information about images in shared
 resource dictionaries are not output by this command. This is
 discussed in a comment in the source code.)

		--check

		
 Checks file structure and well as encryption, linearization,
 and encoding of stream data. A file for which
 --check reports no errors may still have
 errors in stream data content but should otherwise be
 structurally sound. If --check any errors,
 qpdf will exit with a status of 2. There are some recoverable
 conditions that --check detects. These are
 issued as warnings instead of errors. If qpdf finds no errors
 but finds warnings, it will exit with a status of 3 (as of
 version 2.0.4).

 The --raw-stream-data and
 --filtered-stream-data options are ignored unless
 --show-object is given. Either of these options
 will cause the stream data to be written to standard output. In
 order to avoid commingling of stream data with other output, it is
 recommend that these objects not be combined with other
 test/inspection options.

 If --filtered-stream-data is given and
 --normalize-content=y is also given, qpdf will
 attempt to normalize the stream data as if it is a page content
 stream. This attempt will be made even if it is not a page
 content stream, in which case it will produce unusable results.

Chapter 4. QDF Mode

 In QDF mode, qpdf creates PDF files in what we call QDF
 form. A PDF file in QDF form, sometimes called a QDF
 file, is a completely valid PDF file that has
 %QDF-1.0 as its third line (after the pdf header
 and binary characters) and has certain other characteristics. The
 purpose of QDF form is to make it possible to edit PDF files, with
 some restrictions, in an ordinary text editor. This can be very
 useful for experimenting with different PDF constructs or for
 making one-off edits to PDF files (though there are other reasons
 why this may not always work).

 It is ordinarily very difficult to edit PDF files in a text editor
 for two reasons: most meaningful data in PDF files is compressed,
 and PDF files are full of offset and length information that makes
 it hard to add or remove data. A QDF file is organized in a manner
 such that, if edits are kept within certain constraints, the
 fix-qdf program, distributed with qpdf, is able
 to restore edited files to a correct state. The
 fix-qdf program takes no command-line
 arguments. It reads a possibly edited QDF file from standard input
 and writes a repaired file to standard output.

 The following attributes characterize a QDF file:

		
 All objects appear in numerical order in the PDF file, including
 when objects appear in object streams.

		
 Objects are printed in an easy-to-read format, and all line
 endings are normalized to UNIX line endings.

		
 Unless specifically overridden, streams appear uncompressed
 (when qpdf supports the filters and they are compressed with a
 non-lossy compression scheme), and most content streams are
 normalized (line endings are converted to just a UNIX-style
 linefeeds).

		
 All streams lengths are represented as indirect objects, and the
 stream length object is always the next object after the stream.
 If the stream data does not end with a newline, an extra newline
 is inserted, and a special comment appears after the stream
 indicating that this has been done.

		
 If the PDF file contains object streams, if object stream
 n contains k objects,
 those objects are numbered from n+1 through
 n+k, and the object number/offset pairs
 appear on a separate line for each object. Additionally, each
 object in the object stream is preceded by a comment indicating
 its object number and index. This makes it very easy to find
 objects in object streams.

		
 All beginnings of objects, stream tokens,
 endstream tokens, and
 endobj tokens appear on lines by themselves.
 A blank line follows every endobj token.

		
 If there is a cross-reference stream, it is unfiltered.

		
 Page dictionaries and page content streams are marked with
 special comments that make them easy to find.

		
 Comments precede each object indicating the object number of the
 corresponding object in the original file.

 When editing a QDF file, any edits can be made as long as the above
 constraints are maintained. This means that you can freely edit a
 page's content without worrying about messing up the QDF file. It
 is also possible to add new objects so long as those objects are
 added after the last object in the file or subsequent objects are
 renumbered. If a QDF file has object streams in it, you can always
 add the new objects before the xref stream and then change the
 number of the xref stream, since nothing generally ever references
 it by number.

 It is not generally practical to remove objects from QDF files
 without messing up object numbering, but if you remove all
 references to an object, you can run qpdf on the file (after
 running fix-qdf), and qpdf will omit the
 now-orphaned object.

 When fix-qdf is run, it goes through the file
 and recomputes the following parts of the file:

		
 the /N, /W, and
 /First keys of all object stream dictionaries

		
 the pairs of numbers representing object numbers and offsets of
 objects in object streams

		
 all stream lengths

		
 the cross-reference table or cross-reference stream

		
 the offset to the cross-reference table or cross-reference
 stream following the startxref token

Chapter 5. Using the QPDF Library

 The source tree for the qpdf package has an
 examples directory that contains a few
 example programs. The qpdf/qpdf.cc source
 file also serves as a useful example since it exercises almost all
 of the qpdf library's public interface. The best source of
 documentation on the library itself is reading comments in
 include/qpdf/QPDF.hh,
 include/qpdf/QDFWriter.hh, and
 include/qpdf/QPDFObjectHandle.hh.

 All header files are installed in the include/qpdf directory. It
 is recommend that you use #include
 <qpdf/QPDF.hh> rather than adding
 include/qpdf to your include path.

 When linking against the qpdf static library, you may also need to
 specify -lpcre -lz on your link command. If
 your system understands how to read libtool
 .la files, this may not be necessary.

 The qpdf library is safe to use in a multithreaded program, but no
 individual QPDF object instance (including
 QPDF, QPDFObjectHandle, or
 QPDFWriter) can be used in more than one thread at a
 time. Multiple threads may simultaneously work with different
 instances of these and all other QPDF objects.

Chapter 6. Design and Library Notes

Table of Contents

		6.1. Introduction

		6.2. Design Goals

		6.3. Casting Policy

		6.4. Encryption

		6.5. Random Number Generation

		6.6. Adding and Removing Pages

		6.7. Reserving Object Numbers

		6.8. Copying Objects From Other PDF Files

		6.9. Writing PDF Files

		6.10. Filtered Streams

6.1. Introduction

 This section was written prior to the implementation of the qpdf
 package and was subsequently modified to reflect the
 implementation. In some cases, for purposes of explanation, it
 may differ slightly from the actual implementation. As always,
 the source code and test suite are authoritative. Even if there
 are some errors, this document should serve as a road map to
 understanding how this code works.

 In general, one should adhere strictly to a specification when
 writing but be liberal in reading. This way, the product of our
 software will be accepted by the widest range of other programs,
 and we will accept the widest range of input files. This library
 attempts to conform to that philosophy whenever possible but also
 aims to provide strict checking for people who want to validate
 PDF files. If you don't want to see warnings and are trying to
 write something that is tolerant, you can call
 setSuppressWarnings(true). If you want to fail
 on the first error, you can call
 setAttemptRecovery(false). The default
 behavior is to generating warnings for recoverable problems. Note
 that recovery will not always produce the desired results even if
 it is able to get through the file. Unlike most other PDF files
 that produce generic warnings such as “This file is
 damaged,”, qpdf generally issues a detailed error message
 that would be most useful to a PDF developer. This is by design
 as there seems to be a shortage of PDF validation tools out
 there. (This was, in fact, one of the major motivations behind
 the initial creation of qpdf.)

6.2. Design Goals

 The QPDF package includes support for reading and rewriting PDF
 files. It aims to hide from the user details involving object
 locations, modified (appended) PDF files, the
 directness/indirectness of objects, and stream filters including
 encryption. It does not aim to hide knowledge of the object
 hierarchy or content stream contents. Put another way, a user of
 the qpdf library is expected to have knowledge about how PDF files
 work, but is not expected to have to keep track of bookkeeping
 details such as file positions.

 A user of the library never has to care whether an object is
 direct or indirect. All access to objects deals with this
 transparently. All memory management details are also handled by
 the library.

 The PointerHolder object is used internally
 by the library to deal with memory management. This is basically
 a smart pointer object very similar in spirit to the Boost
 library's shared_ptr object, but predating
 it by several years. This library also makes use of a technique
 for giving fine-grained access to methods in one class to other
 classes by using public subclasses with friends and only private
 members that in turn call private methods of the containing class.
 See QPDFObjectHandle::Factory as an
 example.

 The top-level qpdf class is QPDF. A
 QPDF object represents a PDF file. The
 library provides methods for both accessing and mutating PDF
 files.

 QPDFObject is the basic PDF Object class.
 It is an abstract base class from which are derived classes for
 each type of PDF object. Clients do not interact with Objects
 directly but instead interact with
 QPDFObjectHandle.

 QPDFObjectHandle contains
 PointerHolder<QPDFObject> and
 includes accessor methods that are type-safe proxies to the
 methods of the derived object classes as well as methods for
 querying object types. They can be passed around by value,
 copied, stored in containers, etc. with very low overhead.
 Instances of QPDFObjectHandle always
 contain a reference back to the QPDF object
 from which they were created. A
 QPDFObjectHandle may be direct or indirect.
 If indirect, the QPDFObject the
 PointerHolder initially points to is a null
 pointer. In this case, the first attempt to access the underlying
 QPDFObject will result in the
 QPDFObject being resolved via a call to the
 referenced QPDF instance. This makes it
 essentially impossible to make coding errors in which certain
 things will work for some PDF files and not for others based on
 which objects are direct and which objects are indirect.

 Instances of QPDFObjectHandle can be
 directly created and modified using static factory methods in the
 QPDFObjectHandle class. There are factory
 methods for each type of object as well as a convenience method
 QPDFObjectHandle::parse that creates an
 object from a string representation of the object. Existing
 instances of QPDFObjectHandle can also be
 modified in several ways. See comments in
 QPDFObjectHandle.hh for details.

 When the QPDF class creates a new object,
 it dynamically allocates the appropriate type of
 QPDFObject and immediately hands the
 pointer to an instance of QPDFObjectHandle.
 The parser reads a token from the current file position. If the
 token is a not either a dictionary or array opener, an object is
 immediately constructed from the single token and the parser
 returns. Otherwise, the parser is invoked recursively in a
 special mode in which it accumulates objects until it finds a
 balancing closer. During this process, the
 “R” keyword is recognized and an
 indirect QPDFObjectHandle may be
 constructed.

 The QPDF::resolve() method, which is used to
 resolve an indirect object, may be invoked from the
 QPDFObjectHandle class. It first checks a
 cache to see whether this object has already been read. If not,
 it reads the object from the PDF file and caches it. It the
 returns the resulting QPDFObjectHandle.
 The calling object handle then replaces its
 PointerHolder<QDFObject> with the one
 from the newly returned QPDFObjectHandle.
 In this way, only a single copy of any direct object need exist
 and clients can access objects transparently without knowing
 caring whether they are direct or indirect objects. Additionally,
 no object is ever read from the file more than once. That means
 that only the portions of the PDF file that are actually needed
 are ever read from the input file, thus allowing the qpdf package
 to take advantage of this important design goal of PDF files.

 If the requested object is inside of an object stream, the object
 stream itself is first read into memory. Then the tokenizer reads
 objects from the memory stream based on the offset information
 stored in the stream. Those individual objects are cached, after
 which the temporary buffer holding the object stream contents are
 discarded. In this way, the first time an object in an object
 stream is requested, all objects in the stream are cached.

 An instance of QPDF is constructed by using
 the class's default constructor. If desired, the
 QPDF object may be configured with various
 methods that change its default behavior. Then the
 QPDF::processFile() method is passed the name
 of a PDF file, which permanently associates the file with that
 QPDF object. A password may also be given for access to
 password-protected files. QPDF does not enforce encryption
 parameters and will treat user and owner passwords equivalently.
 Either password may be used to access an encrypted file.
 [1]
 QPDF will allow recovery of a user password
 given an owner password. The input PDF file must be seekable.
 (Output files written by QPDFWriter need
 not be seekable, even when creating linearized files.) During
 construction, QPDF validates the PDF file's
 header, and then reads the cross reference tables and trailer
 dictionaries. The QPDF class keeps only
 the first trailer dictionary though it does read all of them so it
 can check the /Prev key.
 QPDF class users may request the root
 object and the trailer dictionary specifically. The cross
 reference table is kept private. Objects may then be requested by
 number of by walking the object tree.

 When a PDF file has a cross-reference stream instead of a
 cross-reference table and trailer, requesting the document's
 trailer dictionary returns the stream dictionary from the
 cross-reference stream instead.

 There are some convenience routines for very common operations
 such as walking the page tree and returning a vector of all page
 objects. For full details, please see the header file
 QPDF.hh.

 The following example should clarify how
 QPDF processes a simple file.

		
 Client constructs QPDF
 pdf and calls
 pdf.processFile("a.pdf");.

		
 The QPDF class checks the beginning of
 a.pdf for
 %!PDF-1.[0-9]+. It then reads the cross
 reference table mentioned at the end of the file, ensuring that
 it is looking before the last %%EOF. After
 getting to trailer keyword, it invokes the
 parser.

		
 The parser sees “<<”, so
 it calls itself recursively in dictionary creation mode.

		
 In dictionary creation mode, the parser keeps accumulating
 objects until it encounters
 “>>”. Each object that is
 read is pushed onto a stack. If
 “R” is read, the last two
 objects on the stack are inspected. If they are integers, they
 are popped off the stack and their values are used to construct
 an indirect object handle which is then pushed onto the stack.
 When “>>” is finally read,
 the stack is converted into a
 QPDF_Dictionary which is placed in a
 QPDFObjectHandle and returned.

		
 The resulting dictionary is saved as the trailer dictionary.

		
 The /Prev key is searched. If present,
 QPDF seeks to that point and repeats
 except that the new trailer dictionary is not saved. If
 /Prev is not present, the initial parsing
 process is complete.

 If there is an encryption dictionary, the document's encryption
 parameters are initialized.

		
 The client requests root object. The
 QPDF class gets the value of root key
 from trailer dictionary and returns it. It is an unresolved
 indirect QPDFObjectHandle.

		
 The client requests the /Pages key from root
 QPDFObjectHandle. The
 QPDFObjectHandle notices that it is
 indirect so it asks QPDF to resolve it.
 QPDF looks in the object cache for an
 object with the root dictionary's object ID and generation
 number. Upon not seeing it, it checks the cross reference
 table, gets the offset, and reads the object present at that
 offset. It stores the result in the object cache and returns
 the cached result. The calling
 QPDFObjectHandle replaces its object
 pointer with the one from the resolved
 QPDFObjectHandle, verifies that it a
 valid dictionary object, and returns the (unresolved indirect)
 QPDFObject handle to the top of the
 Pages hierarchy.

 As the client continues to request objects, the same process is
 followed for each new requested object.

6.3. Casting Policy

 This section describes the casting policy followed by qpdf's
 implementation. This is no concern to qpdf's end users and
 largely of no concern to people writing code that uses qpdf, but
 it could be of interest to people who are porting qpdf to a new
 platform or who are making modifications to the code.

 The C++ code in qpdf is free of old-style casts except where
 unavoidable (e.g. where the old-style cast is in a macro provided
 by a third-party header file). When there is a need for a cast,
 it is handled, in order of preference, by rewriting the code to
 avoid the need for a cast, calling
 const_cast, calling
 static_cast, calling
 reinterpret_cast, or calling some combination
 of the above. As a last resort, a compiler-specific
 #pragma may be used to suppress a warning that
 we don't want to fix. Examples may include suppressing warnings
 about the use of old-style casts in code that is shared between C
 and C++ code.

 The casting policy explicitly prohibits casting between integer
 sizes for no purpose other than to quiet a compiler warning when
 there is no reasonable chance of a problem resulting. The reason
 for this exclusion is that the practice of adding these additional
 casts precludes future use of additional compiler warnings as a
 tool for making future improvements to this aspect of the code,
 and it also damages the readability of the code.

 There are a few significant areas where casting is common in the
 qpdf sources or where casting would be required to quiet higher
 levels of compiler warnings but is omitted at present:

		
 char vs. unsigned char. For
 historical reasons, there are a lot of places in qpdf's
 internals that deal with unsigned char, which
 means that a lot of casting is required to interoperate with
 standard library calls and std::string. In
 retrospect, qpdf should have probably used regular (signed)
 char and char* everywhere and just
 cast to unsigned char when needed, but it's too
 late to make that change now. There are
 reinterpret_cast calls to go between
 char* and unsigned char*, and there
 are static_cast calls to go between
 char and unsigned char. These should
 always be safe.

		
 Non-const unsigned char* used in the
 Pipeline interface. The pipeline interface has a
 write call that uses unsigned
 char* without a const qualifier. The main
 reason for this is to support pipelines that make calls to
 third-party libraries, such as zlib, that don't include
 const in their interfaces. Unfortunately, there
 are many places in the code where it is desirable to have
 const char* with pipelines. None of the pipeline
 implementations in qpdf currently modify the data passed to
 write, and doing so would be counter to the intent of
 Pipeline, but there is nothing in the code to
 prevent this from being done. There are places in the code
 where const_cast is used to remove the
 const-ness of pointers going into Pipelines. This
 could theoretically be unsafe, but there is adequate testing to
 assert that it is safe and will remain safe in qpdf's code.

		
 size_t vs. qpdf_offset_t. This is
 pretty much unavoidable since sizes are unsigned types and
 offsets are signed types. Whenever it is necessary to seek by
 an amount given by a size_t, it becomes necessary
 to mix and match between size_t and
 qpdf_offset_t. Additionally, qpdf sometimes
 treats memory buffers like files (as with
 BufferInputSource, and those seek interfaces have
 to be consistent with file-based input sources. Neither gcc
 nor MSVC give warnings for this case by default, but both have
 warning flags that can enable this. (MSVC:
 /W14267 or /W3, which also
 enables some additional warnings that we ignore; gcc:
 -Wconversion -Wsign-conversion). This could
 matter for files whose sizes are larger than
 263 bytes, but it is reasonable to
 expect that a world where such files are common would also have
 larger size_t and qpdf_offset_t types
 in it. On most 64-bit systems at the time of this writing (the
 release of version 4.1.0 of qpdf), both size_t and
 qpdf_offset_t are 64-bit integer types, while on
 many current 32-bit systems, size_t is a 32-bit
 type while qpdf_offset_t is a 64-bit type. I am
 not aware of any cases where 32-bit systems that have
 size_t smaller than qpdf_offset_t
 could run into problems. Although I can't conclusively rule
 out the possibility of such problems existing, I suspect any
 cases would be pretty contrived. In the event that someone
 should produce a file that qpdf can't handle because of what is
 suspected to be issues involving the handling of
 size_t vs. qpdf_offset_t (such files
 may behave properly on 64-bit systems but not on 32-bit systems
 because they have very large embedded files or streams, for
 example), the above mentioned warning flags could be enabled
 and all those implicit conversions could be carefully
 scrutinized. (I have already gone through that exercise once
 in adding support for files larger than 4 GB in size.) I
 continue to be committed to supporting large files on 32-bit
 systems, but I would not go to any lengths to support corner
 cases involving large embedded files or large streams that work
 on 64-bit systems but not on 32-bit systems because of
 size_t being too small. It is reasonable to
 assume that anyone working with such files would be using a
 64-bit system anyway since many 32-bit applications would have
 similar difficulties.

		
 size_t vs. int or long.
 There are some cases where size_t and
 int or long or size_t
 and unsigned int or unsigned long are
 used interchangeably. These cases occur when working with very
 small amounts of memory, such as with the bit readers (where
 we're working with just a few bytes at a time), some cases of
 strlen, and a few other cases. I have
 scrutinized all of these cases and determined them to be safe,
 but there is no mechanism in the code to ensure that new unsafe
 conversions between int and size_t
 aren't introduced short of good testing and strong awareness of
 the issues. Again, if any such bugs are suspected in the
 future, enabling the additional warning flags and scrutinizing
 the warnings would be in order.

 To be clear, I believe qpdf to be well-behaved with respect to
 sizes and offsets, and qpdf's test suite includes actual
 generation and full processing of files larger than 4 GB in
 size. The issues raised here are largely academic and should not
 in any way be interpreted to mean that qpdf has practical problems
 involving sloppiness with integer types. I also believe that
 appropriate measures have been taken in the code to avoid problems
 with signed vs. unsigned integers from resulting in memory
 overwrites or other issues with potential security implications,
 though there are never any absolute guarantees.

6.4. Encryption

 Encryption is supported transparently by qpdf. When opening a PDF
 file, if an encryption dictionary exists, the
 QPDF object processes this dictionary using
 the password (if any) provided. The primary decryption key is
 computed and cached. No further access is made to the encryption
 dictionary after that time. When an object is read from a file,
 the object ID and generation of the object in which it is
 contained is always known. Using this information along with the
 stored encryption key, all stream and string objects are
 transparently decrypted. Raw encrypted objects are never stored
 in memory. This way, nothing in the library ever has to know or
 care whether it is reading an encrypted file.

 An interface is also provided for writing encrypted streams and
 strings given an encryption key. This is used by
 QPDFWriter when it rewrites encrypted
 files.

 When copying encrypted files, unless otherwise directed, qpdf will
 preserve any encryption in force in the original file. qpdf can
 do this with either the user or the owner password. There is no
 difference in capability based on which password is used. When 40
 or 128 bit encryption keys are used, the user password can be
 recovered with the owner password. With 256 keys, the user and
 owner passwords are used independently to encrypt the actual
 encryption key, so while either can be used, the owner password
 can no longer be used to recover the user password.

 Starting with version 4.0.0, qpdf can read files that are not
 encrypted but that contain encrypted attachments, but it cannot
 write such files. qpdf also requires the password to be specified
 in order to open the file, not just to extract attachments, since
 once the file is open, all decryption is handled transparently.
 When copying files like this while preserving encryption, qpdf
 will apply the file's encryption to everything in the file, not
 just to the attachments. When decrypting the file, qpdf will
 decrypt the attachments. In general, when copying PDF files with
 multiple encryption formats, qpdf will choose the newest format.
 The only exception to this is that clear-text metadata will be
 preserved as clear-text if it is that way in the original file.

6.5. Random Number Generation

 QPDF generates random numbers to support generation of encrypted
 data. Versions prior to 5.0.1 used random or
 rand from stdlib to
 generate random numbers. Version 5.0.1, if available, used
 operating system-provided secure random number generation instead,
 enabling use of stdlib random number
 generation only if enabled by a compile-time option. Starting in
 version 5.1.0, use of insecure random numbers was disabled unless
 enabled at compile time. Starting in version 5.1.0, it is also
 possible for you to disable use of OS-provided secure random
 numbers. This is especially useful on Windows if you want to
 avoid a dependency on Microsoft's cryptography API. In this case,
 you must provide your own random data provider. Regardless of how
 you compile qpdf, starting in version 5.1.0, it is possible for
 you to provide your own random data provider at runtime. This
 would enable you to use some software-based secure pseudorandom
 number generator and to avoid use of whatever the operating system
 provides. For details on how to do this, please refer to the
 top-level README file in the source distribution and to comments
 in QUtil.hh.

6.6. Adding and Removing Pages

 While qpdf's API has supported adding and modifying objects for
 some time, version 3.0 introduces specific methods for adding and
 removing pages. These are largely convenience routines that
 handle two tricky issues: pushing inheritable resources from the
 /Pages tree down to individual pages and
 manipulation of the /Pages tree itself. For
 details, see addPage and surrounding methods
 in QPDF.hh.

6.7. Reserving Object Numbers

 Version 3.0 of qpdf introduced the concept of reserved objects.
 These are seldom needed for ordinary operations, but there are
 cases in which you may want to add a series of indirect objects
 with references to each other to a QPDF
 object. This causes a problem because you can't determine the
 object ID that a new indirect object will have until you add it to
 the QPDF object with
 QPDF::makeIndirectObject. The only way to
 add two mutually referential objects to a
 QPDF object prior to version 3.0 would be
 to add the new objects first and then make them refer to each
 other after adding them. Now it is possible to create a
 reserved object using
 QPDFObjectHandle::newReserved. This is an
 indirect object that stays “unresolved” even if it is
 queried for its type. So now, if you want to create a set of
 mutually referential objects, you can create reservations for each
 one of them and use those reservations to construct the
 references. When finished, you can call
 QPDF::replaceReserved to replace the reserved
 objects with the real ones. This functionality will never be
 needed by most applications, but it is used internally by QPDF
 when copying objects from other PDF files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”. For an example of how to use
 reserved objects, search for newReserved in
 test_driver.cc in qpdf's sources.

6.8. Copying Objects From Other PDF Files

 Version 3.0 of qpdf introduced the ability to copy objects into a
 QPDF object from a different
 QPDF object, which we refer to as
 foreign objects. This allows arbitrary
 merging of PDF files. The qpdf command-line
 tool provides limited support for basic page selection, including
 merging in pages from other files, but the library's API makes it
 possible to implement arbitrarily complex merging operations. The
 main method for copying foreign objects is
 QPDF::copyForeignObject. This takes an
 indirect object from another QPDF and
 copies it recursively into this object while preserving all object
 structure, including circular references. This means you can add
 a direct object that you create from scratch to a
 QPDF object with
 QPDF::makeIndirectObject, and you can add an
 indirect object from another file with
 QPDF::copyForeignObject. The fact that
 QPDF::makeIndirectObject does not
 automatically detect a foreign object and copy it is an explicit
 design decision. Copying a foreign object seems like a
 sufficiently significant thing to do that it should be done
 explicitly.

 The other way to copy foreign objects is by passing a page from
 one QPDF to another by calling
 QPDF::addPage. In contrast to
 QPDF::makeIndirectObject, this method
 automatically distinguishes between indirect objects in the
 current file, foreign objects, and direct objects.

6.9. Writing PDF Files

 The qpdf library supports file writing of
 QPDF objects to PDF files through the
 QPDFWriter class. The
 QPDFWriter class has two writing modes: one
 for non-linearized files, and one for linearized files. See Chapter 7, Linearization for a description of linearization
 is implemented. This section describes how we write
 non-linearized files including the creation of QDF files (see
 Chapter 4, QDF Mode.

 This outline was written prior to implementation and is not
 exactly accurate, but it provides a correct “notional”
 idea of how writing works. Look at the code in
 QPDFWriter for exact details.

		
 Initialize state:

		
 next object number = 1

		
 object queue = empty

		
 renumber table: old object id/generation to new id/0 = empty

		
 xref table: new id -> offset = empty

		
 Create a QPDF object from a file.

		
 Write header for new PDF file.

		
 Request the trailer dictionary.

		
 For each value that is an indirect object, grab the next object
 number (via an operation that returns and increments the
 number). Map object to new number in renumber table. Push
 object onto queue.

		
 While there are more objects on the queue:

		
 Pop queue.

		
 Look up object's new number n in the
 renumbering table.

		
 Store current offset into xref table.

		
 Write n 0 obj.

		
 If object is null, whether direct or indirect, write out
 null, thus eliminating unresolvable indirect object
 references.

		
 If the object is a stream stream, write stream contents,
 piped through any filters as required, to a memory buffer.
 Use this buffer to determine the stream length.

		
 If object is not a stream, array, or dictionary, write out
 its contents.

		
 If object is an array or dictionary (including stream),
 traverse its elements (for array) or values (for
 dictionaries), handling recursive dictionaries and arrays,
 looking for indirect objects. When an indirect object is
 found, if it is not resolvable, ignore. (This case is
 handled when writing it out.) Otherwise, look it up in the
 renumbering table. If not found, grab the next available
 object number, assign to the referenced object in the
 renumbering table, and push the referenced object onto the
 queue. As a special case, when writing out a stream
 dictionary, replace length, filters, and decode parameters
 as required.

 Write out dictionary or array, replacing any unresolvable
 indirect object references with null (pdf spec says
 reference to non-existent object is legal and resolves to
 null) and any resolvable ones with references to the
 renumbered objects.

		
 If the object is a stream, write
 stream\n, the stream contents (from the
 memory buffer), and \nendstream\n.

		
 When done, write endobj.

 Once we have finished the queue, all referenced objects will have
 been written out and all deleted objects or unreferenced objects
 will have been skipped. The new cross-reference table will
 contain an offset for every new object number from 1 up to the
 number of objects written. This can be used to write out a new
 xref table. Finally we can write out the trailer dictionary with
 appropriately computed /ID (see spec, 8.3, File Identifiers), the
 cross reference table offset, and %%EOF.

6.10. Filtered Streams

 Support for streams is implemented through the
 Pipeline interface which was designed for
 this package.

 When reading streams, create a series of
 Pipeline objects. The
 Pipeline abstract base requires
 implementation write() and
 finish() and provides an implementation of
 getNext(). Each pipeline object, upon
 receiving data, does whatever it is going to do and then writes
 the data (possibly modified) to its successor. Alternatively, a
 pipeline may be an end-of-the-line pipeline that does something
 like store its output to a file or a memory buffer ignoring a
 successor. For additional details, look at
 Pipeline.hh.

 QPDF can read raw or filtered streams.
 When reading a filtered stream, the QPDF
 class creates a Pipeline object for one of
 each appropriate filter object and chains them together. The last
 filter should write to whatever type of output is required. The
 QPDF class has an interface to write raw or
 filtered stream contents to a given pipeline.

[1]
 As pointed out earlier, the intention is not for qpdf to be used
 to bypass security on files. but as any open source PDF consumer
 may be easily modified to bypass basic PDF document security,
 and qpdf offers may transformations that can do this as well,
 there seems to be little point in the added complexity of
 conditionally enforcing document security.

Chapter 7. Linearization

Table of Contents

		7.1. Basic Strategy for Linearization

		7.2. Preparing For Linearization

		7.3. Optimization

		7.4. Writing Linearized Files

		7.5. Calculating Linearization Data

		7.6. Known Issues with Linearization

		7.7. Debugging Note

 This chapter describes how QPDF and
 QPDFWriter implement creation and processing
 of linearized PDFS.

7.1. Basic Strategy for Linearization

 To avoid the incestuous problem of having the qpdf library
 validate its own linearized files, we have a special linearized
 file checking mode which can be invoked via qpdf
 --check-linearization (or qpdf
 --check). This mode reads the linearization parameter
 dictionary and the hint streams and validates that object
 ordering, parameters, and hint stream contents are correct. The
 validation code was first tested against linearized files created
 by external tools (Acrobat and pdlin) and then used to validate
 files created by QPDFWriter itself.

7.2. Preparing For Linearization

 Before creating a linearized PDF file from any other PDF file, the
 PDF file must be altered such that all page attributes are
 propagated down to the page level (and not inherited from parents
 in the /Pages tree). We also have to know
 which objects refer to which other objects, being concerned with
 page boundaries and a few other cases. We refer to this part of
 preparing the PDF file as optimization,
 discussed in Section 7.3, “Optimization”. Note the, in
 this context, the term optimization is a
 qpdf term, and the term linearization is a
 term from the PDF specification. Do not be confused by the fact
 that many applications refer to linearization as optimization or
 web optimization.

 When creating linearized PDF files from optimized PDF files, there
 are really only a few issues that need to be dealt with:

		
 Creation of hints tables

		
 Placing objects in the correct order

		
 Filling in offsets and byte sizes

7.3. Optimization

 In order to perform various operations such as linearization and
 splitting files into pages, it is necessary to know which objects
 are referenced by which pages, page thumbnails, and root and
 trailer dictionary keys. It is also necessary to ensure that all
 page-level attributes appear directly at the page level and are
 not inherited from parents in the pages tree.

 We refer to the process of enforcing these constraints as
 optimization. As mentioned above, note
 that some applications refer to linearization as optimization.
 Although this optimization was initially motivated by the need to
 create linearized files, we are using these terms separately.

 PDF file optimization is implemented in the
 QPDF_optimization.cc source file. That file
 is richly commented and serves as the primary reference for the
 optimization process.

 After optimization has been completed, the private member
 variables obj_user_to_objects and
 object_to_obj_users in
 QPDF have been populated. Any object that
 has more than one value in the
 object_to_obj_users table is shared. Any
 object that has exactly one value in the
 object_to_obj_users table is private. To find
 all the private objects in a page or a trailer or root dictionary
 key, one merely has make this determination for each element in
 the obj_user_to_objects table for the given
 page or key.

 Note that pages and thumbnails have different object user types,
 so the above test on a page will not include objects referenced by
 the page's thumbnail dictionary and nothing else.

7.4. Writing Linearized Files

 We will create files with only primary hint streams. We will
 never write overflow hint streams. (As of PDF version 1.4,
 Acrobat doesn't either, and they are never necessary.) The hint
 streams contain offset information to objects that point to where
 they would be if the hint stream were not present. This means
 that we have to calculate all object positions before we can
 generate and write the hint table. This means that we have to
 generate the file in two passes. To make this reliable,
 QPDFWriter in linearization mode invokes
 exactly the same code twice to write the file to a pipeline.

 In the first pass, the target pipeline is a count pipeline chained
 to a discard pipeline. The count pipeline simply passes its data
 through to the next pipeline in the chain but can return the
 number of bytes passed through it at any intermediate point. The
 discard pipeline is an end of line pipeline that just throws its
 data away. The hint stream is not written and dummy values with
 adequate padding are stored in the first cross reference table,
 linearization parameter dictionary, and /Prev key of the first
 trailer dictionary. All the offset, length, object renumbering
 information, and anything else we need for the second pass is
 stored.

 At the end of the first pass, this information is passed to the
 QPDF class which constructs a compressed
 hint stream in a memory buffer and returns it.
 QPDFWriter uses this information to write a
 complete hint stream object into a memory buffer. At this point,
 the length of the hint stream is known.

 In the second pass, the end of the pipeline chain is a regular
 file instead of a discard pipeline, and we have known values for
 all the offsets and lengths that we didn't have in the first pass.
 We have to adjust offsets that appear after the start of the hint
 stream by the length of the hint stream, which is known. Anything
 that is of variable length is padded, with the padding code
 surrounding any writing code that differs in the two passes. This
 ensures that changes to the way things are represented never
 results in offsets that were gathered during the first pass
 becoming incorrect for the second pass.

 Using this strategy, we can write linearized files to a
 non-seekable output stream with only a single pass to disk or
 wherever the output is going.

7.5. Calculating Linearization Data

 Once a file is optimized, we have information about which objects
 access which other objects. We can then process these tables to
 decide which part (as described in “Linearized PDF Document
 Structure” in the PDF specification) each object is
 contained within. This tells us the exact order in which objects
 are written. The QPDFWriter class asks for
 this information and enqueues objects for writing in the proper
 order. It also turns on a check that causes an exception to be
 thrown if an object is encountered that has not already been
 queued. (This could happen only if there were a bug in the
 traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization

 There are a handful of known issues with this linearization code.
 These issues do not appear to impact the behavior of linearized
 files which still work as intended: it is possible for a web
 browser to begin to display them before they are fully
 downloaded. In fact, it seems that various other programs that
 create linearized files have many of these same issues. These
 items make reference to terminology used in the linearization
 appendix of the PDF specification.

		
 Thread Dictionary information keys appear in part 4 with the
 rest of Threads instead of in part 9. Objects in part 9 are
 not grouped together functionally.

		
 We are not calculating numerators for shared object positions
 within content streams or interleaving them within content
 streams.

		
 We generate only page offset, shared object, and outline hint
 tables. It would be relatively easy to add some additional
 tables. We gather most of the information needed to create
 thumbnail hint tables. There are comments in the code about
 this.

7.7. Debugging Note

 The qpdf --show-linearization command can show
 the complete contents of linearization hint streams. To look at
 the raw data, you can extract the filtered contents of the
 linearization hint tables using qpdf --show-object=n
 --filtered-stream-data. Then, to convert this into a
 bit stream (since linearization tables are bit streams written
 without regard to byte boundaries), you can pipe the resulting
 data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

Chapter 8. Object and Cross-Reference Streams

Table of Contents

		8.1. Object Streams

		8.2. Cross-Reference Streams

				8.2.1. Cross-Reference Stream Data

		8.3. Implications for Linearized Files

		8.4. Implementation Notes

 This chapter provides information about the implementation of
 object stream and cross-reference stream support in qpdf.

8.1. Object Streams

 Object streams can contain any regular object except the
 following:

		
 stream objects

		
 objects with generation > 0

		
 the encryption dictionary

		
 objects containing the /Length of another stream

 In addition, Adobe reader (at least as of version 8.0.0) appears
 to not be able to handle having the document catalog appear in an
 object stream if the file is encrypted, though this is not
 specifically disallowed by the specification.

 There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”for details.

 The PDF specification refers to objects in object streams as
 “compressed objects” regardless of whether the object
 stream is compressed.

 The generation number of every object in an object stream must be
 zero. It is possible to delete and replace an object in an object
 stream with a regular object.

 The object stream dictionary has the following keys:

		
 /N: number of objects

		
 /First: byte offset of first object

		
 /Extends: indirect reference to stream that
 this extends

 Stream collections are formed with /Extends.
 They must form a directed acyclic graph. These can be used for
 semantic information and are not meaningful to the PDF document's
 syntactic structure. Although qpdf preserves stream collections,
 it never generates them and doesn't make use of this information
 in any way.

 The specification recommends limiting the number of objects in
 object stream for efficiency in reading and decoding. Acrobat 6
 uses no more than 100 objects per object stream for linearized
 files and no more 200 objects per stream for non-linearized files.
 QPDFWriter, in object stream generation
 mode, never puts more than 100 objects in an object stream.

 Object stream contents consists of N pairs of
 integers, each of which is the object number and the byte offset
 of the object relative to the first object in the stream, followed
 by the objects themselves, concatenated.

8.2. Cross-Reference Streams

 For non-hybrid files, the value following
 startxref is the byte offset to the xref stream
 rather than the word xref.

 For hybrid files (files containing both xref tables and
 cross-reference streams), the xref table's trailer dictionary
 contains the key /XRefStm whose value is the
 byte offset to a cross-reference stream that supplements the xref
 table. A PDF 1.5-compliant application should read the xref table
 first. Then it should replace any object that it has already seen
 with any defined in the xref stream. Then it should follow any
 /Prev pointer in the original xref table's
 trailer dictionary. The specification is not clear about what
 should be done, if anything, with a /Prev
 pointer in the xref stream referenced by an xref table. The
 QPDF class ignores it, which is probably
 reasonable since, if this case were to appear for any sensible PDF
 file, the previous xref table would probably have a corresponding
 /XRefStm pointer of its own. For example, if a
 hybrid file were appended, the appended section would have its own
 xref table and /XRefStm. The appended xref
 table would point to the previous xref table which would point the
 /XRefStm, meaning that the new
 /XRefStm doesn't have to point to it.

 Since xref streams must be read very early, they may not be
 encrypted, and the may not contain indirect objects for keys
 required to read them, which are these:

		
 /Type: value /XRef

		
 /Size: value n+1: where
 n is highest object number (same as
 /Size in the trailer dictionary)

		
 /Index (optional): value
 [n count ...]
 used to determine which objects' information is stored in this
 stream. The default is [0 /Size].

		
 /Prev: value
 offset: byte offset of previous xref
 stream (same as /Prev in the trailer
 dictionary)

		
 /W [...]: sizes of each field in the xref
 table

 The other fields in the xref stream, which may be indirect if
 desired, are the union of those from the xref table's trailer
 dictionary.

8.2.1. Cross-Reference Stream Data

 The stream data is binary and encoded in big-endian byte order.
 Entries are concatenated, and each entry has a length equal to
 the total of the entries in /W above. Each
 entry consists of one or more fields, the first of which is the
 type of the field. The number of bytes for each field is given
 by /W above. A 0 in /W
 indicates that the field is omitted and has the default value.
 The default value for the field type is
 “1”. All other default values are
 “0”.

 PDF 1.5 has three field types:

		
 0: for free objects. Format: 0 obj
 next-generation, same as the free table in a
 traditional cross-reference table

		
 1: regular non-compressed object. Format: 1 offset
 generation

		
 2: for objects in object streams. Format: 2
 object-stream-number index, the number of object
 stream containing the object and the index within the object
 stream of the object.

 It seems standard to have the first entry in the table be
 0 0 0 instead of 0 0 ffff
 if there are no deleted objects.

8.3. Implications for Linearized Files

 For linearized files, the linearization dictionary, document
 catalog, and page objects may not be contained in object streams.

 Objects stored within object streams are given the highest range
 of object numbers within the main and first-page cross-reference
 sections.

 It is okay to use cross-reference streams in place of regular xref
 tables. There are on special considerations.

 Hint data refers to object streams themselves, not the objects in
 the streams. Shared object references should also be made to the
 object streams. There are no reference in any hint tables to the
 object numbers of compressed objects (objects within object
 streams).

 When numbering objects, all shared objects within both the first
 and second halves of the linearized files must be numbered
 consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes

 There are three modes for writing object streams:
 disable, preserve, and
 generate. In disable mode, we do not generate
 any object streams, and we also generate an xref table rather than
 xref streams. This can be used to generate PDF files that are
 viewable with older readers. In preserve mode, we write object
 streams such that written object streams contain the same objects
 and /Extends relationships as in the original
 file. This is equal to disable if the file has no object streams.
 In generate, we create object streams ourselves by grouping
 objects that are allowed in object streams together in sets of no
 more than 100 objects. We also ensure that the PDF version is at
 least 1.5 in generate mode, but we preserve the version header in
 the other modes. The default is preserve.

 We do not support creation of hybrid files. When we write files,
 even in preserve mode, we will lose any xref tables and merge any
 appended sections.

Appendix A. Release Notes

 For a detailed list of changes, please see the file
 ChangeLog in the source distribution.

		6.0.0: November 10, 2015

				
 Implement --deterministic-id command-line
 option and QPDFWriter::setDeterministicID
 as well as C API function
 qpdf_set_deterministic_ID for generating
 a deterministic ID for non-encrypted files. When this option
 is selected, the ID of the file depends on the contents of the
 output file, and not on transient items such as the timestamp
 or output file name.

		
 Make qpdf more tolerant of files whose xref table entries are
 not the correct length.

		5.1.3: May 24, 2015

				
 Bug fix: fix-qdf was not properly handling files that
 contained object streams with more than 255 objects in them.

		
 Bug fix: qpdf was not properly initializing Microsoft's secure
 crypto provider on fresh Windows installations that had not
 had any keys created yet.

		
 Fix a few errors found by Gynvael Coldwind and
	Mateusz Jurczyk of the Google Security Team. Please see the
 ChangeLog for details.

		
 Properly handle pages that have no contents at all. There were
 many cases in which qpdf handled this fine, but a few methods
 blindly obtained page contents with handling the possibility
 that there were no contents.

		
 Make qpdf more robust for a few more kinds of problems that
 may occur in invalid PDF files.

		5.1.2: June 7, 2014

				
 Bug fix: linearizing files could create a corrupted output
 file under extremely unlikely file size circumstances. See
 ChangeLog for details. The odds of getting hit by this are
 very low, though one person did.

		
 Bug fix: qpdf would fail to write files that had streams with
 decode parameters referencing other streams.

		
 New example program: pdf-split-pages:
 efficiently split PDF files into individual pages. The example
 program does this more efficiently than using qpdf
 --pages to do it.

		
 Packaging fix: Visual C++ binaries did not support Windows XP.
 This has been rectified by updating the compilers used to
 generate the release binaries.

		5.1.1: January 14, 2014

				
 Performance fix: copying foreign objects could be very slow
 with certain types of files. This was most likely to be
 visible during page splitting and was due to traversing the
 same objects multiple times in some cases.

		5.1.0: December 17, 2013

				
 Added runtime option
 (QUtil::setRandomDataProvider) to supply
 your own random data provider. You can use this if you want
 to avoid using the OS-provided secure random number generation
 facility or stdlib's less secure version. See comments in
 include/qpdf/QUtil.hh for details.

		
 Fixed image comparison tests to not create 12-bit-per-pixel
 images since some versions of tiffcmp have bugs in comparing
 them in some cases. This increases the disk space required by
 the image comparison tests, which are off by default anyway.

		
 Introduce a number of small fixes for compilation on the
 latest clang in MacOS and the latest Visual C++ in Windows.

		
 Be able to handle broken files that end the xref table header
 with a space instead of a newline.

		5.0.1: October 18, 2013

				
 Thanks to a detailed review by Florian Weimer and the Red Hat
 Product Security Team, this release includes a number of
 non-user-visible security hardening changes. Please see the
 ChangeLog file in the source distribution for the complete
 list.

		
 When available, operating system-specific secure random number
 generation is used for generating initialization vectors and
 other random values used during encryption or file creation.
 For the Windows build, this results in an added dependency on
 Microsoft's cryptography API. To disable the OS-specific
 cryptography and use the old version, pass the
 --enable-insecure-random option to
 ./configure.

		
 The qpdf command-line tool now issues a
 warning when -accessibility=n is specified
 for newer encryption versions stating that the option is
 ignored. qpdf, per the spec, has always ignored this flag,
 but it previously did so silently. This warning is issued
 only by the command-line tool, not by the library. The
 library's handling of this flag is unchanged.

		5.0.0: July 10, 2013

				
 Bug fix: previous versions of qpdf would lose objects with
 generation != 0 when generating object streams. Fixing this
 required changes to the public API.

		
 Removed methods from public API that were only supposed to be
 called by QPDFWriter and couldn't realistically be called
 anywhere else. See ChangeLog for details.

		
 New QPDFObjGen class added to represent an object
 ID/generation pair.
 QPDFObjectHandle::getObjGen() is now
 preferred over
 QPDFObjectHandle::getObjectID() and
 QPDFObjectHandle::getGeneration() as it
 makes it less likely for people to accidentally write code
 that ignores the generation number. See
 QPDF.hh and
 QPDFObjectHandle.hh for additional notes.

		
 Add --show-npages command-line option to the
 qpdf command to show the number of pages in
 a file.

		
 Allow omission of the page range within
 --pages for the qpdf
 command. When omitted, the page range is implicitly taken to
 be all the pages in the file.

		
 Various enhancements were made to support different types of
 broken files or broken readers. Details can be found in
 ChangeLog.

		4.1.0: April 14, 2013

				
 Note to people including qpdf in distributions: the
 .la files generated by libtool are now
 installed by qpdf's make install target.
 Before, they were not installed. This means that if your
 distribution does not want to include .la
 files, you must remove them as part of your packaging process.

		
 Major enhancement: API enhancements have been made to support
 parsing of content streams. This enhancement includes the
 following changes:

		
 QPDFObjectHandle::parseContentStream
 method parses objects in a content stream and calls
 handlers in a callback class. The example
 examples/pdf-parse-content.cc
 illustrates how this may be used.

		
 QPDFObjectHandle can now represent operators
 and inline images, object types that may only appear in
 content streams.

		
 Method QPDFObjectHandle::getTypeCode()
 returns an enumerated type value representing the
 underlying object type. Method
 QPDFObjectHandle::getTypeName()
 returns a text string describing the name of the type of a
 QPDFObjectHandle object. These methods can be
 used for more efficient parsing and debugging/diagnostic
 messages.

		
 qpdf --check now parses all pages' content
 streams in addition to doing other checks. While there are
 still many types of errors that cannot be detected, syntactic
 errors in content streams will now be reported.

		
 Minor compilation enhancements have been made to facilitate
 easier for support for a broader range of compilers and
 compiler versions.

		
 Warning flags have been moved into a separate variable in
 autoconf.mk

		
 The configure flag --enable-werror work
 for Microsoft compilers

		
 All MSVC CRT security warnings have been resolved.

		
 All C-style casts in C++ Code have been replaced by C++
 casts, and many casts that had been included to suppress
 higher warning levels for some compilers have been removed,
 primarily for clarity. Places where integer type coercion
 occurs have been scrutinized. A new casting policy has
 been documented in the manual. This is of concern mainly
 to people porting qpdf to new platforms or compilers. It
 is not visible to programmers writing code that uses the
 library

		
 Some internal limits have been removed in code that
 converts numbers to strings. This is largely invisible to
 users, but it does trigger a bug in some older versions of
 mingw-w64's C++ library. See
 README-windows.txt in the source
 distribution if you think this may affect you. The copy of
 the DLL distributed with qpdf's binary distribution is not
 affected by this problem.

		
 The RPM spec file previously included with qpdf has been
 removed. This is because virtually all Linux distributions
 include qpdf now that it is a dependency of CUPS filters.

		
 A few bug fixes are included:

		
 Overridden compressed objects are properly handled.
 Before, there were certain constructs that could cause qpdf
 to see old versions of some objects. The most usual
 manifestation of this was loss of filled in form values for
 certain files.

		
 Installation no longer uses GNU/Linux-specific versions of
 some commands, so make install works on
 Solaris with native tools.

		
 The 64-bit mingw Windows binary package no longer includes
 a 32-bit DLL.

		4.0.1: January 17, 2013

				
 Fix detection of binary attachments in test suite to avoid
 false test failures on some platforms.

		
 Add clarifying comment in QPDF.hh to
 methods that return the user password explaining that it is no
 longer possible with newer encryption formats to recover the
 user password knowing the owner password. In earlier
 encryption formats, the user password was encrypted in the
 file using the owner password. In newer encryption formats, a
 separate encryption key is used on the file, and that key is
 independently encrypted using both the user password and the
 owner password.

		4.0.0: December 31, 2012

				
 Major enhancement: support has been added for newer encryption
 schemes supported by version X of Adobe Acrobat. This
 includes use of 127-character passwords, 256-bit encryption
 keys, and the encryption scheme specified in ISO 32000-2, the
 PDF 2.0 specification. This scheme can be chosen from the
 command line by specifying use of 256-bit keys. qpdf also
 supports the deprecated encryption method used by Acrobat IX.
 This encryption style has known security weaknesses and should
 not be used in practice. However, such files exist “in
 the wild,” so support for this scheme is still useful.
 New methods
 QPDFWriter::setR6EncryptionParameters
 (for the PDF 2.0 scheme) and
 QPDFWriter::setR5EncryptionParameters
 (for the deprecated scheme) have been added to enable these
 new encryption schemes. Corresponding functions have been
 added to the C API as well.

		
 Full support for Adobe extension levels in PDF version
 information. Starting with PDF version 1.7, corresponding to
 ISO 32000, Adobe adds new functionality by increasing the
 extension level rather than increasing the version. This
 support includes addition of the
 QPDF::getExtensionLevel method for
 retrieving the document's extension level, addition of
 versions of
 QPDFWriter::setMinimumPDFVersion and
 QPDFWriter::forcePDFVersion that accept
 an extension level, and extended syntax for specifying forced
 and minimum versions on the command line as described in Section 3.5, “Advanced Transformation Options”. Corresponding
 functions have been added to the C API as well.

		
 Minor fixes to prevent qpdf from referencing objects in the
 file that are not referenced in the file's overall structure.
 Most files don't have any such objects, but some files have
 contain unreferenced objects with errors, so these fixes
 prevent qpdf from needlessly rejecting or complaining about
 such objects.

		
 Add new generalized methods for reading and writing files
 from/to programmer-defined sources. The method
 QPDF::processInputSource allows the
 programmer to use any input source for the input file, and
 QPDFWriter::setOutputPipeline allows the
 programmer to write the output file through any pipeline.
 These methods would make it possible to perform any number of
 specialized operations, such as accessing external storage
 systems, creating bindings for qpdf in other programming
 languages that have their own I/O systems, etc.

		
 Add new method QPDF::getEncryptionKey for
 retrieving the underlying encryption key used in the file.

		
 This release includes a small handful of non-compatible API
 changes. While effort is made to avoid such changes, all the
 non-compatible API changes in this version were to parts of
 the API that would likely never be used outside the library
 itself. In all cases, the altered methods or structures were
 parts of the QPDF that were public to
 enable them to be called from either
 QPDFWriter or were part of validation
 code that was over-zealous in reporting problems in parts of
 the file that would not ordinarily be referenced. In no case
 did any of the removed methods do anything worse that falsely
 report error conditions in files that were broken in ways that
 didn't matter. The following public parts of the
 QPDF class were changed in a
 non-compatible way:

		
 Updated nested QPDF::EncryptionData
 class to add fields needed by the newer encryption formats,
 member variables changed to private so that future changes
 will not require breaking backward compatibility.

		
 Added additional parameters to
 compute_data_key, which is used by
 QPDFWriter to compute the encryption
 key used to encrypt a specific object.

		
 Removed the method
 flattenScalarReferences. This method
 was previously used prior to writing a new PDF file, but it
 has the undesired side effect of causing qpdf to read
 objects in the file that were not referenced. Some
 otherwise files have unreferenced objects with errors in
 them, so this could cause qpdf to reject files that would
 be accepted by virtually all other PDF readers. In fact,
 qpdf relied on only a very small part of what
 flattenScalarReferences did, so only this part has been
 preserved, and it is now done directly inside
 QPDFWriter.

		
 Removed the method decodeStreams.
 This method was used by the --check option
 of the qpdf command-line tool to force
 all streams in the file to be decoded, but it also suffered
 from the problem of opening otherwise unreferenced streams
 and thus could report false positive. The
 --check option now causes qpdf to go
 through all the motions of writing a new file based on the
 original one, so it will always reference and check exactly
 those parts of a file that any ordinary viewer would check.

		
 Removed the method
 trimTrailerForWrite. This method was
 used by QPDFWriter to modify the
 original QPDF object by removing fields from the trailer
 dictionary that wouldn't apply to the newly written file.
 This functionality, though generally harmless, was a poor
 implementation and has been replaced by having QPDFWriter
 filter these out when copying the trailer rather than
 modifying the original QPDF object. (Note that qpdf never
 modifies the original file itself.)

		
 Allow the PDF header to appear anywhere in the first 1024
 bytes of the file. This is consistent with what other readers
 do.

		
 Fix the pkg-config files to list zlib and
 pcre in Requires.private to better
 support static linking using pkg-config.

		3.0.2: September 6, 2012

				
 Bug fix: QPDFWriter::setOutputMemory did
 not work when not used with
 QPDFWriter::setStaticID, which made it
 pretty much useless. This has been fixed.

		
 New API call
 QPDFWriter::setExtraHeaderText inserts
 additional text near the header of the PDF file. The intended
 use case is to insert comments that may be consumed by a
 downstream application, though other use cases may exist.

		3.0.1: August 11, 2012

				
 Version 3.0.0 included addition of files for
 pkg-config, but this was not mentioned in
 the release notes. The release notes for 3.0.0 were updated
 to mention this.

		
 Bug fix: if an object stream ended with a scalar object not
 followed by space, qpdf would incorrectly report that it
 encountered a premature EOF. This bug has been in qpdf since
 version 2.0.

		3.0.0: August 2, 2012

				
 Acknowledgment: I would like to express gratitude for the
 contributions of Tobias Hoffmann toward the release of qpdf
 version 3.0. He is responsible for most of the implementation
 and design of the new API for manipulating pages, and
 contributed code and ideas for many of the improvements made
 in version 3.0. Without his work, this release would
 certainly not have happened as soon as it did, if at all.

		
 Non-compatible API change: The version of
 QPDFObjectHandle::replaceStreamData that
 uses a StreamDataProvider no longer
 requires (or accepts) a length parameter.
 See Appendix C, Upgrading to 3.0 for an explanation.
 While care is taken to avoid non-compatible API changes in
 general, an exception was made this time because the new
 interface offers an opportunity to significantly simplify
 calling code.

		
 Support has been added for large files. The test suite
 verifies support for files larger than 4 gigabytes, and manual
 testing has verified support for files larger than 10
 gigabytes. Large file support is available for both 32-bit
 and 64-bit platforms as long as the compiler and underlying
 platforms support it.

		
 Support for page selection (splitting and merging PDF files)
 has been added to the qpdf command-line
 tool. See Section 3.4, “Page Selection Options”.

		
 Options have been added to the qpdf
 command-line tool for copying encryption parameters from
 another file. See Section 3.2, “Basic Options”.

		
 New methods have been added to the QPDF
 object for adding and removing pages. See Section 6.6, “Adding and Removing Pages”.

		
 New methods have been added to the QPDF
 object for copying objects from other PDF files. See Section 6.8, “Copying Objects From Other PDF Files”

		
 A new method QPDFObjectHandle::parse has
 been added for constructing
 QPDFObjectHandle objects from a string
 description.

		
 Methods have been added to QPDFWriter
 to allow writing to an already open stdio FILE*
 addition to writing to standard output or a named file.
 Methods have been added to QPDF to be
 able to process a file from an already open stdio
 FILE*. This makes it possible to read and write
 PDF from secure temporary files that have been unlinked prior
 to being fully read or written.

		
 The QPDF::emptyPDF can be used to allow
 creation of PDF files from scratch. The example
 examples/pdf-create.cc illustrates how it
 can be used.

		
 Several methods to take
 PointerHolder<Buffer> can now
 also accept std::string arguments.

		
 Many new convenience methods have been added to the library,
 most in QPDFObjectHandle. See
 ChangeLog for a full list.

		
 When building on a platform that supports ELF shared libraries
 (such as Linux), symbol versions are enabled by default. They
 can be disabled by passing
 --disable-ld-version-script to
 ./configure.

		
 The file libqpdf.pc is now installed to
 support pkg-config.

		
 Image comparison tests are off by default now since they are
 not needed to verify a correct build or port of qpdf. They
 are needed only when changing the actual PDF output generated
 by qpdf. You should enable them if you are making deep
 changes to qpdf itself. See README for
 details.

		
 Large file tests are off by default but can be turned on with
 ./configure or by setting an environment
 variable before running the test suite. See
 README for details.

		
 When qpdf's test suite fails, failures are not printed to the
 terminal anymore by default. Instead, find them in
 build/qtest.log. For packagers who are
 building with an autobuilder, you can add the
 --enable-show-failed-test-output option to
 ./configure to restore the old behavior.

		2.3.1: December 28, 2011

				
 Fix thread-safety problem resulting from non-thread-safe use
 of the PCRE library.

		
 Made a few minor documentation fixes.

		
 Add workaround for a bug that appears in some versions of
 ghostscript to the test suite

		
 Fix minor build issue for Visual C++ 2010.

		2.3.0: August 11, 2011

				
 Bug fix: when preserving existing encryption on encrypted
 files with cleartext metadata, older qpdf versions would
 generate password-protected files with no valid password.
 This operation now works. This bug only affected files
 created by copying existing encryption parameters; explicit
 encryption with specification of cleartext metadata worked
 before and continues to work.

		
 Enhance QPDFWriter with a new
 constructor that allows you to delay the specification of the
 output file. When using this constructor, you may now call
 QPDFWriter::setOutputFilename to specify
 the output file, or you may use
 QPDFWriter::setOutputMemory to cause
 QPDFWriter to write the resulting PDF
 file to a memory buffer. You may then use
 QPDFWriter::getBuffer to retrieve the
 memory buffer.

		
 Add new API call QPDF::replaceObject for
 replacing objects by object ID

		
 Add new API call QPDF::swapObjects for
 swapping two objects by object ID

		
 Add QPDFObjectHandle::getDictAsMap and
 QPDFObjectHandle::getArrayAsVector to
 allow retrieval of dictionary objects as maps and array
 objects as vectors.

		
 Add functions qpdf_get_info_key and
 qpdf_set_info_key to the C API for
 manipulating string fields of the document's
 /Info dictionary.

		
 Add functions qpdf_init_write_memory,
 qpdf_get_buffer_length, and
 qpdf_get_buffer to the C API for writing
 PDF files to a memory buffer instead of a file.

		2.2.4: June 25, 2011

				
 Fix installation and compilation issues; no functionality
 changes.

		2.2.3: April 30, 2011

				
 Handle some damaged streams with incorrect characters
 following the stream keyword.

		
 Improve handling of inline images when normalizing content
 streams.

		
 Enhance error recovery to properly handle files that use
 object 0 as a regular object, which is specifically disallowed
 by the spec.

		2.2.2: October 4, 2010

				
 Add new function qpdf_read_memory
 to the C API to call
 QPDF::processMemoryFile. This was an
 omission in qpdf 2.2.1.

		2.2.1: October 1, 2010

				
 Add new method QPDF::setOutputStreams
 to replace std::cout and
 std::cerr with other streams for generation
 of diagnostic messages and error messages. This can be useful
 for GUIs or other applications that want to capture any output
 generated by the library to present to the user in some other
 way. Note that QPDF does not write to
 std::cout (or the specified output stream)
 except where explicitly mentioned in
 QPDF.hh, and that the only use of the
 error stream is for warnings. Note also that output of
 warnings is suppressed when
 setSuppressWarnings(true) is called.

		
 Add new method QPDF::processMemoryFile
 for operating on PDF files that are loaded into memory rather
 than in a file on disk.

		
 Give a warning but otherwise ignore empty PDF objects by
 treating them as null. Empty object are not permitted by the
 PDF specification but have been known to appear in some actual
 PDF files.

		
 Handle inline image filter abbreviations when the appear as
 stream filter abbreviations. The PDF specification does not
 allow use of stream filter abbreviations in this way, but
 Adobe Reader and some other PDF readers accept them since they
 sometimes appear incorrectly in actual PDF files.

		
 Implement miscellaneous enhancements to
 PointerHolder and
 Buffer to support other changes.

		2.2.0: August 14, 2010

				
 Add new methods to QPDFObjectHandle
 (newStream and
 replaceStreamData for creating new
 streams and replacing stream data. This makes it possible to
 perform a wide range of operations that were not previously
 possible.

		
 Add new helper method in
 QPDFObjectHandle
 (addPageContents) for appending or
 prepending new content streams to a page. This method makes
 it possible to manipulate content streams without having to be
 concerned whether a page's contents are a single stream or an
 array of streams.

		
 Add new method in QPDFObjectHandle:
 replaceOrRemoveKey, which replaces a
 dictionary key
 with a given value unless the value is null, in which case it
 removes the key instead.

		
 Add new method in QPDFObjectHandle:
 getRawStreamData, which returns the raw
 (unfiltered) stream data into a buffer. This complements the
 getStreamData method, which returns the
 filtered (uncompressed) stream data and can only be used when
 the stream's data is filterable.

		
 Provide two new examples:
 pdf-double-page-size and
 pdf-invert-images that illustrate the newly
 added interfaces.

		
 Fix a memory leak that would cause loss of a few bytes for
 every object involved in a cycle of object references. Thanks
 to Jian Ma for calling my attention to the leak.

		2.1.5: April 25, 2010

				
 Remove restriction of file identifier strings to 16 bytes.
 This unnecessary restriction was preventing qpdf from being
 able to encrypt or decrypt files with identifier strings that
 were not exactly 16 bytes long. The specification imposes no
 such restriction.

		2.1.4: April 18, 2010

				
 Apply the same padding calculation fix from version 2.1.2 to
 the main cross reference stream as well.

		
 Since qpdf --check only performs limited
 checks, clarify the output to make it clear that there still
 may be errors that qpdf can't check. This should make it less
 surprising to people when another PDF reader is unable to read
 a file that qpdf thinks is okay.

		2.1.3: March 27, 2010

				
 Fix bug that could cause a failure when rewriting PDF files
 that contain object streams with unreferenced objects that in
 turn reference indirect scalars.

		
 Don't complain about (invalid) AES streams that aren't a
 multiple of 16 bytes. Instead, pad them before decrypting.

		2.1.2: January 24, 2010

				
 Fix bug in padding around first half cross reference stream in
 linearized files. The bug could cause an assertion failure
 when linearizing certain unlucky files.

		2.1.1: December 14, 2009

				
 No changes in functionality; insert missing include in an
 internal library header file to support gcc 4.4, and update
 test suite to ignore broken Adobe Reader installations.

		2.1: October 30, 2009

				
 This is the first version of qpdf to include Windows support.
 On Windows, it is possible to build a DLL. Additionally, a
 partial C-language API has been introduced, which makes it
 possible to call qpdf functions from non-C++ environments. I
 am very grateful to Zarko Gagic (http://delphi.about.com/)
 for tirelessly testing numerous pre-release versions of this
 DLL and providing many excellent suggestions on improving the
 interface.

 For programming to the C interface, please see the header file
 qpdf/qpdf-c.h and the example
 examples/pdf-linearize.c.

		
 Zarko Gajic has written a Delphi wrapper for qpdf, which can
 be downloaded from qpdf's download side. Zarko's Delphi
 wrapper is released with the same licensing terms as qpdf
 itself and comes with this disclaimer: “Delphi wrapper
 unit qpdf.pas created by Zarko Gajic
 (http://delphi.about.com/).
 Use at your own risk and for whatever purpose you want. No
 support is provided. Sample code is provided.”

		
 Support has been added for AES encryption and crypt filters.
 Although qpdf does not presently support files that use
 PKI-based encryption, with the addition of AES and crypt
 filters, qpdf is now be able to open most encrypted files
 created with newer versions of Acrobat or other PDF creation
 software. Note that I have not been able to get very many
 files encrypted in this way, so it's possible there could
 still be some cases that qpdf can't handle. Please report
 them if you find them.

		
 Many error messages have been improved to include more
 information in hopes of making qpdf a more useful tool for PDF
 experts to use in manually recovering damaged PDF files.

		
 Attempt to avoid compressing metadata streams if possible.
 This is consistent with other PDF creation applications.

		
 Provide new command-line options for AES encrypt, cleartext
 metadata, and setting the minimum and forced PDF versions of
 output files.

		
 Add additional methods to the QPDF
 object for querying the document's permissions. Although qpdf
 does not enforce these permissions, it does make them
 available so that applications that use qpdf can enforce
 permissions.

		
 The --check option to qpdf
 has been extended to include some additional information.

		
 There have been a handful of non-compatible API changes. For
 details, see Appendix B, Upgrading from 2.0 to 2.1.

		2.0.6: May 3, 2009

				
 Do not attempt to uncompress streams that have decode
 parameters we don't recognize. Earlier versions of qpdf would
 have rejected files with such streams.

		2.0.5: March 10, 2009

				
 Improve error handling in the LZW decoder, and fix a small
 error introduced in the previous version with regard to
 handling full tables. The LZW decoder has been more strongly
 verified in this release.

		2.0.4: February 21, 2009

				
 Include proper support for LZW streams encoded without the
 “early code change” flag. Special thanks to Atom
 Smasher who reported the problem and provided an input file
 compressed in this way, which I did not previously have.

		
 Implement some improvements to file recovery logic.

		2.0.3: February 15, 2009

				
 Compile cleanly with gcc 4.4.

		
 Handle strings encoded as UTF-16BE properly.

		2.0.2: June 30, 2008

				
 Update test suite to work properly with a
 non-bash /bin/sh and
 with Perl 5.10. No changes were made to the actual qpdf
 source code itself for this release.

		2.0.1: May 6, 2008

				
 No changes in functionality or interface. This release
 includes fixes to the source code so that qpdf compiles
 properly and passes its test suite on a broader range of
 platforms. See ChangeLog in the source
 distribution for details.

		2.0: April 29, 2008

				
 First public release.

Appendix B. Upgrading from 2.0 to 2.1

 Although, as a general rule, we like to avoid introducing
 source-level incompatibilities in qpdf's interface, there were a
 few non-compatible changes made in this version. A considerable
 amount of source code that uses qpdf will probably compile without
 any changes, but in some cases, you may have to update your code.
 The changes are enumerated here. There are also some new
 interfaces; for those, please refer to the header files.

		
 QPDF's exception handling mechanism now uses
 std::logic_error for internal errors and
 std::runtime_error for runtime errors in
 favor of the now removed QEXC classes used
 in previous versions. The QEXC exception
 classes predated the addition of the
 <stdexcept> header file to the C++
 standard library. Most of the exceptions thrown by the qpdf
 library itself are still of type QPDFExc
 which is now derived from
 std::runtime_error. Programs that caught
 an instance of std::exception and
 displayed it by calling the what() method
 will not need to be changed.

		
 The QPDFExc class now internally
 represents various fields of the error condition and provides
 interfaces for querying them. Among the fields is a numeric
 error code that can help applications act differently on (a small
 number of) different error conditions. See
 QPDFExc.hh for details.

		
 Warnings can be retrieved from qpdf as instances of
 QPDFExc instead of strings.

		
 The nested QPDF::EncryptionData class's
 constructor takes an additional argument. This class is
 primarily intended to be used by
 QPDFWriter. There's not really anything
 useful an end-user application could do with it. It probably
 shouldn't really be part of the public interface to begin with.
 Likewise, some of the methods for computing internal encryption
 dictionary parameters have changed to support
 /R=4 encryption.

		
 The method QPDF::getUserPassword has been
 removed since it didn't do what people would think it did. There
 are now two new methods:
 QPDF::getPaddedUserPassword and
 QPDF::getTrimmedUserPassword. The first one
 does what the old QPDF::getUserPassword
 method used to do, which is to return the password with possible
 binary padding as specified by the PDF specification. The second
 one returns a human-readable password string.

		
 The enumerated types that used to be nested in
 QPDFWriter have moved to top-level
 enumerated types and are now defined in the file
 qpdf/Constants.h. This enables them to be
 shared by both the C and C++ interfaces.

Appendix C. Upgrading to 3.0

 For the most part, the API for qpdf version 3.0 is backward
 compatible with versions 2.1 and later. There are two exceptions:

		
 The method
 QPDFObjectHandle::replaceStreamData that
 uses a StreamDataProvider to provide the
 stream data no longer takes a length
 parameter. While it would have been easy enough to keep the
 parameter for backward compatibility, in this case, the
 parameter was removed since this provides the user an
 opportunity to simplify the calling code. This method was
 introduced in version 2.2. At the time, the
 length parameter was required in order to
 ensure that calls to the stream data provider returned the same
 length for a specific stream every time they were invoked. In
 particular, the linearization code depends on this. Instead,
 qpdf 3.0 and newer check for that constraint explicitly. The
 first time the stream data provider is called for a specific
 stream, the actual length is saved, and subsequent calls are
 required to return the same number of bytes. This means the
 calling code no longer has to compute the length in advance,
 which can be a significant simplification. If your code fails
 to compile because of the extra argument and you don't want to
 make other changes to your code, just omit the argument.

		
 Many methods take long long instead of other
 integer types. Most if not all existing code should compile
 fine with this change since such parameters had always
 previously been smaller types. This change was required to
 support files larger than two gigabytes in size.

Appendix D. Upgrading to 4.0

 While version 4.0 includes a few non-compatible API changes, it is
 very unlikely that anyone's code would have used any of those parts
 of the API since they generally required information that would
 only be available inside the library. In the unlikely event that
 you should run into trouble, please see the ChangeLog. See also
 Appendix A, Release Notes for a complete list of the
 non-compatible API changes made in this version.

@unixroot/usr/share/doc/qpdf/qpdf-manual.pdf

QPDF Manual

For QPDF Version 6.0.0, November 10, 2015

Jay Berkenbilt

QPDF Manual: For QPDF Version 6.0.0, November 10, 2015
Jay Berkenbilt
Copyright © 2005–2015 Jay Berkenbilt

iii

Table of Contents
General Information .. iv
1. What is QPDF? ... 1
2. Building and Installing QPDF .. 2

2.1. System Requirements ... 2
2.2. Build Instructions .. 2

3. Running QPDF ... 4
3.1. Basic Invocation ... 4
3.2. Basic Options ... 4
3.3. Encryption Options ... 5
3.4. Page Selection Options .. 6
3.5. Advanced Transformation Options ... 8
3.6. Testing, Inspection, and Debugging Options .. 10

4. QDF Mode ... 12
5. Using the QPDF Library ... 14
6. Design and Library Notes ... 15

6.1. Introduction .. 15
6.2. Design Goals .. 15
6.3. Casting Policy .. 17
6.4. Encryption ... 18
6.5. Random Number Generation ... 19
6.6. Adding and Removing Pages ... 19
6.7. Reserving Object Numbers ... 19
6.8. Copying Objects From Other PDF Files .. 20
6.9. Writing PDF Files ... 20
6.10. Filtered Streams .. 21

7. Linearization ... 22
7.1. Basic Strategy for Linearization ... 22
7.2. Preparing For Linearization ... 22
7.3. Optimization ... 22
7.4. Writing Linearized Files ... 23
7.5. Calculating Linearization Data ... 23
7.6. Known Issues with Linearization ... 23
7.7. Debugging Note .. 24

8. Object and Cross-Reference Streams ... 25
8.1. Object Streams .. 25
8.2. Cross-Reference Streams .. 25

8.2.1. Cross-Reference Stream Data .. 26
8.3. Implications for Linearized Files .. 26
8.4. Implementation Notes .. 27

A. Release Notes ... 28
B. Upgrading from 2.0 to 2.1 .. 38
C. Upgrading to 3.0 ... 39
D. Upgrading to 4.0 ... 40

iv

General Information
QPDF is a program that does structural, content-preserving transformations on PDF files. QPDF's website is located
at http://qpdf.sourceforge.net/. QPDF's source code is hosted on github at https://github.com/qpdf/qpdf.

QPDF has been released under the terms of Version 2.0 of the Artistic License [http://www.opensource.org/licenses/
artistic-license-2.0.php], a copy of which appears in the file Artistic-2.0 in the source distribution.

QPDF was originally created in 2001 and modified periodically between 2001 and 2005 during my employment at
Apex CoVantage [http://www.apexcovantage.com]. Upon my departure from Apex, the company graciously allowed
me to take ownership of the software and continue maintaining as an open source project, a decision for which I am
very grateful. I have made considerable enhancements to it since that time. I feel fortunate to have worked for people
who would make such a decision. This work would not have been possible without their support.

http://qpdf.sourceforge.net/

https://github.com/qpdf/qpdf

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.opensource.org/licenses/artistic-license-2.0.php

http://www.apexcovantage.com

http://www.apexcovantage.com

1

Chapter 1. What is QPDF?
QPDF is a program that does structural, content-preserving transformations on PDF files. It could have been called
something like pdf-to-pdf. It also provides many useful capabilities to developers of PDF-producing software or for
people who just want to look at the innards of a PDF file to learn more about how they work.

With QPDF, it is possible to copy objects from one PDF file into another and to manipulate the list of pages in a PDF
file. This makes it possible to merge and split PDF files. The QPDF library also makes it possible for you to create
PDF files from scratch. In this mode, you are responsible for supplying all the contents of the file, while the QPDF
library takes care off all the syntactical representation of the objects, creation of cross references tables and, if you
use them, object streams, encryption, linearization, and other syntactic details. You are still responsible for generating
PDF content on your own.

QPDF has been designed with very few external dependencies, and it is intentionally very lightweight. QPDF is not a
PDF content creation library, a PDF viewer, or a program capable of converting PDF into other formats. In particular,
QPDF knows nothing about the semantics of PDF content streams. If you are looking for something that can do that,
you should look elsewhere. However, once you have a valid PDF file, QPDF can be used to transform that file in ways
perhaps your original PDF creation can't handle. For example, many programs generate simple PDF files but can't
password-protect them, web-optimize them, or perform other transformations of that type.

2

Chapter 2. Building and Installing
QPDF
This chapter describes how to build and install qpdf. Please see also the README and INSTALL files in the source
distribution.

2.1. System Requirements
The qpdf package has relatively few external dependencies. In order to build qpdf, the following packages are required:

• zlib: http://www.zlib.net/

• pcre: http://www.pcre.org/

• gnu make 3.81 or newer: http://www.gnu.org/software/make

• perl version 5.8 or newer: http://www.perl.org/; required for fix-qdf and the test suite.

• GNU diffutils (any version): http://www.gnu.org/software/diffutils/ is required to run the test suite. Note that this is
the version of diff present on virtually all GNU/Linux systems. This is required because the test suite uses diff -u.

• A C++ compiler that works well with STL and has the long long type. Most modern C++ compilers should fit
the bill fine. QPDF is tested with gcc and Microsoft Visual C++.

Part of qpdf's test suite does comparisons of the contents PDF files by converting them images and comparing the
images. The image comparison tests are disabled by default. Those tests are not required for determining correctness of
a qpdf build if you have not modified the code since the test suite also contains expected output files that are compared
literally. The image comparison tests provide an extra check to make sure that any content transformations don't break
the rendering of pages. Transformations that affect the content streams themselves are off by default and are only
provided to help developers look into the contents of PDF files. If you are making deep changes to the library that cause
changes in the contents of the files that qpdf generates, then you should enable the image comparison tests. Enable
them by running configure with the --enable-test-compare-images flag. If you enable this, the following additional
requirements are required by the test suite. Note that in no case are these items required to use qpdf.

• libtiff: http://www.remotesensing.org/libtiff/

• GhostScript version 8.60 or newer: http://www.ghostscript.com

If you do not enable this, then you do not need to have tiff and ghostscript.

If Adobe Reader is installed as acroread, some additional test cases will be enabled. These test cases simply verify
that Adobe Reader can open the files that qpdf creates. They require version 8.0 or newer to pass. However, in order
to avoid having qpdf depend on non-free (as in liberty) software, the test suite will still pass without Adobe reader,
and the test suite still exercises the full functionality of the software.

Pre-built documentation is distributed with qpdf, so you should generally not need to rebuild the documentation.
In order to build the documentation from its docbook sources, you need the docbook XML style sheets (http://
downloads.sourceforge.net/docbook/). To build the PDF version of the documentation, you need Apache fop (http://
xml.apache.org/fop/) version 0.94 or higher.

2.2. Build Instructions
Building qpdf on UNIX is generally just a matter of running

http://www.zlib.net/

http://www.pcre.org/

http://www.gnu.org/software/make

http://www.perl.org/

http://www.gnu.org/software/diffutils/

http://www.remotesensing.org/libtiff/

http://www.ghostscript.com

http://downloads.sourceforge.net/docbook/

http://downloads.sourceforge.net/docbook/

http://xml.apache.org/fop/

http://xml.apache.org/fop/

Building and Installing QPDF

3

./configure
make

You can also run make check to run the test suite and make install to install. Please run ./configure --help for
options on what can be configured. You can also set the value of DESTDIR during installation to install to a temporary
location, as is common with many open source packages. Please see also the README and INSTALL files in the
source distribution.

Building on Windows is a little bit more complicated. For details, please see README-windows.txt in the source
distribution. You can also download a binary distribution for Windows. There is a port of qpdf to Visual C++ version 6
in the contrib area generously contributed by Jian Ma. This is also discussed in more detail in README-windows.txt.

There are some other things you can do with the build. Although qpdf uses autoconf, it does not use automake but
instead uses a hand-crafted non-recursive Makefile that requires gnu make. If you're really interested, please read the
comments in the top-level Makefile.

4

Chapter 3. Running QPDF
This chapter describes how to run the qpdf program from the command line.

3.1. Basic Invocation
When running qpdf, the basic invocation is as follows:

qpdf [options] infilename [outfilename]

This converts PDF file infilename to PDF file outfilename. The output file is functionally identical to the input file but
may have been structurally reorganized. Also, orphaned objects will be removed from the file. Many transformations
are available as controlled by the options below. In place of infilename, the parameter --empty may be specified. This
causes qpdf to use a dummy input file that contains zero pages. The only normal use case for using --empty would be if
you were going to add pages from another source, as discussed in Section 3.4, “Page Selection Options”, page 6.

outfilename does not have to be seekable, even when generating linearized files. Specifying “--” as outfilename
means to write to standard output. However, you can't specify the same file as both the input and the output because
qpdf reads data from the input file as it writes to the output file.

Most options require an output file, but some testing or inspection commands do not. These are specifically noted.

3.2. Basic Options
The following options are the most common ones and perform commonly needed transformations.

--password=password
Specifies a password for accessing encrypted files.

--linearize
Causes generation of a linearized (web-optimized) output file.

--copy-encryption=file
Encrypt the file using the same encryption parameters, including user and owner password, as the specified file.
Use --encrypt-file-password to specify a password if one is needed to open this file. Note that copying the
encryption parameters from a file also copies the first half of /ID from the file since this is part of the encryption
parameters.

--encrypt-file-password=password
If the file specified with --copy-encryption requires a password, specify the password using this option. Note
that only one of the user or owner password is required. Both passwords will be preserved since QPDF does
not distinguish between the two passwords. It is possible to preserve encryption parameters, including the owner
password, from a file even if you don't know the file's owner password.

--encrypt options --
Causes generation an encrypted output file. Please see Section 3.3, “Encryption Options”, page 5 for details
on how to specify encryption parameters.

--decrypt
Removes any encryption on the file. A password must be supplied if the file is password protected.

--pages options --
Select specific pages from one or more input files. See Section 3.4, “Page Selection Options”, page 6 for
details on how to do page selection (splitting and merging).

Running QPDF

5

Password-protected files may be opened by specifying a password. By default, qpdf will preserve any encryption data
associated with a file. If --decrypt is specified, qpdf will attempt to remove any encryption information. If --encrypt
is specified, qpdf will replace the document's encryption parameters with whatever is specified.

Note that qpdf does not obey encryption restrictions already imposed on the file. Doing so would be meaningless since
qpdf can be used to remove encryption from the file entirely. This functionality is not intended to be used for bypassing
copyright restrictions or other restrictions placed on files by their producers.

In all cases where qpdf allows specification of a password, care must be taken if the password contains characters
that fall outside of the 7-bit US-ASCII character range to ensure that the exact correct byte sequence is provided. It
is possible that a future version of qpdf may handle this more gracefully. For example, if a password was encrypted
using a password that was encoded in ISO-8859-1 and your terminal is configured to use UTF-8, the password you
supply may not work properly. There are various approaches to handling this. For example, if you are using Linux and
have the iconv executable (part of the ICU package) installed, you could pass --password=`echo password | iconv
-t iso-8859-1` to qpdf where password is a password specified in your terminal's locale. A detailed discussion of
this is out of scope for this manual, but just be aware of this issue if you have trouble with a password that contains
8-bit characters.

3.3. Encryption Options
To change the encryption parameters of a file, use the --encrypt flag. The syntax is

--encrypt user-password owner-password key-length [restrictions] --

Note that “--” terminates parsing of encryption flags and must be present even if no restrictions are present.

Either or both of the user password and the owner password may be empty strings.

The value for key-length may be 40, 128, or 256. The restriction flags are dependent upon key length. When no
additional restrictions are given, the default is to be fully permissive.

If key-length is 40, the following restriction options are available:

--print=[yn]
Determines whether or not to allow printing.

--modify=[yn]
Determines whether or not to allow document modification.

--extract=[yn]
Determines whether or not to allow text/image extraction.

--annotate=[yn]
Determines whether or not to allow comments and form fill-in and signing.

If key-length is 128, the following restriction options are available:

--accessibility=[yn]
Determines whether or not to allow accessibility to visually impaired.

--extract=[yn]
Determines whether or not to allow text/graphic extraction.

--print=print-opt
Controls printing access. print-opt may be one of the following:

• full: allow full printing

Running QPDF

6

• low: allow low-resolution printing only

• none: disallow printing

--modify=modify-opt
Controls modify access. modify-opt may be one of the following, each of which implies all the options that
follow it:

• all: allow full document modification

• annotate: allow comment authoring and form operations

• form: allow form field fill-in and signing

• assembly: allow document assembly only

• none: allow no modifications

--cleartext-metadata
If specified, any metadata stream in the document will be left unencrypted even if the rest of the document is
encrypted. This also forces the PDF version to be at least 1.5.

--use-aes=[yn]
If --use-aes=y is specified, AES encryption will be used instead of RC4 encryption. This forces the PDF version
to be at least 1.6.

--force-V4
Use of this option forces the /V and /R parameters in the document's encryption dictionary to be set to the value
4. As qpdf will automatically do this when required, there is no reason to ever use this option. It exists primarily
for use in testing qpdf itself. This option also forces the PDF version to be at least 1.5.

If key-length is 256, the minimum PDF version is 1.7 with extension level 8, and the AES-based encryption format
used is the PDF 2.0 encryption method supported by Acrobat X. the same options are available as with 128 bits with
the following exceptions:

--use-aes
This option is not available with 256-bit keys. AES is always used with 256-bit encryption keys.

--force-V4
This option is not available with 256 keys.

--force-R5
If specified, qpdf sets the minimum version to 1.7 at extension level 3 and writes the deprecated encryption format
used by Acrobat version IX. This option should not be used in practice to generate PDF files that will be in general
use, but it can be useful to generate files if you are trying to test proper support in another application for PDF
files encrypted in this way.

The default for each permission option is to be fully permissive.

3.4. Page Selection Options
Starting with qpdf 3.0, it is possible to split and merge PDF files by selecting pages from one or more input files.
Whatever file is given as the primary input file is used as the starting point, but its pages are replaced with pages as
specified.

--pages input-file [--password=password] [page-range] [...] --

Running QPDF

7

Multiple input files may be specified. Each one is given as the name of the input file, an optional password (if required
to open the file), and the range of pages. Note that “--” terminates parsing of page selection flags.

For each file that pages should be taken from, specify the file, a password needed to open the file (if any), and a page
range. The password needs to be given only once per file. If any of the input files are the same as the primary input
file or the file used to copy encryption parameters (if specified), you do not need to repeat the password here. The
same file can be repeated multiple times. If a file that is repeated has a password, the password only has to be given
the first time. All non-page data (info, outlines, page numbers, etc.) are taken from the primary input file. To discard
these, use --empty as the primary input.

Starting with qpdf 5.0.0, it is possible to omit the page range. If qpdf sees a value in the place where it expects a page
range and that value is not a valid range but is a valid file name, qpdf will implicitly use the range 1-z, meaning that
it will include all pages in the file. This makes it possible to easily combine all pages in a set of files with a command
like qpdf --empty out.pdf --pages *.pdf --.

It is not presently possible to specify the same page from the same file directly more than once, but you can make this
work by specifying two different paths to the same file (such as by putting ./ somewhere in the path). This can also be
used if you want to repeat a page from one of the input files in the output file. This may be made more convenient in
a future version of qpdf if there is enough demand for this feature.

The page range is a set of numbers separated by commas, ranges of numbers separated dashes, or combinations of
those. The character “z” represents the last page. Pages can appear in any order. Ranges can appear with a high number
followed by a low number, which causes the pages to appear in reverse. Repeating a number will cause an error, but
you can use the workaround discussed above should you really want to include the same page twice.

Example page ranges:

• 1,3,5-9,15-12: pages 1, 2, 3, 5, 6, 7, 8, 9, 15, 14, 13, and 12.

• z-1: all pages in the document in reverse

Note that qpdf doesn't presently do anything special about other constructs in a PDF file that may know about pages,
so semantics of splitting and merging vary across features. For example, the document's outlines (bookmarks) point
to actual page objects, so if you select some pages and not others, bookmarks that point to pages that are in the output
file will work, and remaining bookmarks will not work. On the other hand, page labels (page numbers specified in the
file) are just sequential, so page labels will be messed up in the output file. A future version of qpdf may do a better
job at handling these issues. (Note that the qpdf library already contains all of the APIs required in order to implement
this in your own application if you need it.) In the mean time, you can always use --empty as the primary input file to
avoid copying all of that from the first file. For example, to take pages 1 through 5 from a infile.pdf while preserving
all metadata associated with that file, you could use

qpdf infile.pdf --pages infile.pdf 1-5 -- outfile.pdf

If you wanted pages 1 through 5 from infile.pdf but you wanted the rest of the metadata to be dropped, you could
instead run

qpdf --empty --pages infile.pdf 1-5 -- outfile.pdf

If you wanted to take pages 1–5 from file1.pdf and pages 11–15 from file2.pdf in reverse, you would run

qpdf file1.pdf --pages file1.pdf 1-5 file2.pdf 15-11 -- outfile.pdf

If, for some reason, you wanted to take the first page of an encrypted file called encrypted.pdf with password pass
and repeat it twice in an output file, and if you wanted to drop metadata (like page numbers and outlines) but preserve
encryption, you would use

Running QPDF

8

qpdf --empty --copy-encryption=encrypted.pdf --encryption-file-password=pass
--pages encrypted.pdf --password=pass 1 ./encrypted.pdf --password=pass 1 --
outfile.pdf

Note that we had to specify the password all three times because giving a password as --encryption-file-password
doesn't count for page selection, and as far as qpdf is concerned, encrypted.pdf and ./encrypted.pdf are separated files.
These are all corner cases that most users should hopefully never have to be bothered with.

3.5. Advanced Transformation Options
These transformation options control fine points of how qpdf creates the output file. Mostly these are of use only to
people who are very familiar with the PDF file format or who are PDF developers. The following options are available:

--stream-data=option
Controls transformation of stream data. The value of option may be one of the following:

• compress: recompress stream data when possible (default)

• preserve: leave all stream data as is

• uncompress: uncompress stream data when possible

--normalize-content=[yn]
Enables or disables normalization of content streams.

--suppress-recovery
Prevents qpdf from attempting to recover damaged files.

--object-streams=mode
Controls handling of object streams. The value of mode may be one of the following:

• preserve: preserve original object streams (default)

• disable: don't write any object streams

• generate: use object streams wherever possible

--ignore-xref-streams
Tells qpdf to ignore any cross-reference streams.

--qdf
Turns on QDF mode. For additional information on QDF, please see Chapter 4, QDF Mode, page 12.

--min-version=version
Forces the PDF version of the output file to be at least version. In other words, if the input file has a lower
version than the specified version, the specified version will be used. If the input file has a higher version, the
input file's original version will be used. It is seldom necessary to use this option since qpdf will automatically
increase the version as needed when adding features that require newer PDF readers.

The version number may be expressed in the form major.minor.extension-level, in which case the
version is interpreted as major.minor at extension level extension-level. For example, version 1.7.8
represents version 1.7 at extension level 8. Note that minimal syntax checking is done on the command line.

--force-version=version
This option forces the PDF version to be the exact version specified even when the file may have content that
is not supported in that version. The version number is interpreted in the same way as with --min-version so

Running QPDF

9

that extension levels can be set. In some cases, forcing the output file's PDF version to be lower than that of the
input file will cause qpdf to disable certain features of the document. Specifically, 256-bit keys are disabled if
the version is less than 1.7 with extension level 8 (except R5 is disabled if less than 1.7 with extension level 3),
AES encryption is disabled if the version is less than 1.6, cleartext metadata and object streams are disabled if less
than 1.5, 128-bit encryption keys are disabled if less than 1.4, and all encryption is disabled if less than 1.3. Even
with these precautions, qpdf won't be able to do things like eliminate use of newer image compression schemes,
transparency groups, or other features that may have been added in more recent versions of PDF.

As a general rule, with the exception of big structural things like the use of object streams or AES encryption,
PDF viewers are supposed to ignore features in files that they don't support from newer versions. This means that
forcing the version to a lower version may make it possible to open your PDF file with an older version, though
bear in mind that some of the original document's functionality may be lost.

By default, when a stream is encoded using non-lossy filters that qpdf understands and is not already compressed
using a good compression scheme, qpdf will uncompress and recompress streams. Assuming proper filter implements,
this is safe and generally results in smaller files. This behavior may also be explicitly requested with --stream-
data=compress.

When --stream-data=preserve is specified, qpdf will never attempt to change the filtering of any stream data.

When --stream-data=uncompress is specified, qpdf will attempt to remove any non-lossy filters that it supports. This
includes /FlateDecode, /LZWDecode, /ASCII85Decode, and /ASCIIHexDecode. This can be very useful
for inspecting the contents of various streams.

When --normalize-content=y is specified, qpdf will attempt to normalize whitespace and newlines in page content
streams. This is generally safe but could, in some cases, cause damage to the content streams. This option is intended
for people who wish to study PDF content streams or to debug PDF content. You should not use this for “production”
PDF files.

Ordinarily, qpdf will attempt to recover from certain types of errors in PDF files. These include errors in the cross-
reference table, certain types of object numbering errors, and certain types of stream length errors. Sometimes, qpdf
may think it has recovered but may not have actually recovered, so care should be taken when using this option as
some data loss is possible. The --suppress-recovery option will prevent qpdf from attempting recovery. In this case,
it will fail on the first error that it encounters.

Object streams, also known as compressed objects, were introduced into the PDF specification at version 1.5,
corresponding to Acrobat 6. Some older PDF viewers may not support files with object streams. qpdf can be used to
transform files with object streams to files without object streams or vice versa. As mentioned above, there are three
object stream modes: preserve, disable, and generate.

In preserve mode, the relationship to objects and the streams that contain them is preserved from the original file. In
disable mode, all objects are written as regular, uncompressed objects. The resulting file should be readable by older
PDF viewers. (Of course, the content of the files may include features not supported by older viewers, but at least
the structure will be supported.) In generate mode, qpdf will create its own object streams. This will usually result in
more compact PDF files, though they may not be readable by older viewers. In this mode, qpdf will also make sure
the PDF version number in the header is at least 1.5.

Ordinarily, qpdf reads cross-reference streams when they are present in a PDF file. If --ignore-xref-streams is
specified, qpdf will ignore any cross-reference streams for hybrid PDF files. The purpose of hybrid files is to make
some content available to viewers that are not aware of cross-reference streams. It is almost never desirable to ignore
them. The only time when you might want to use this feature is if you are testing creation of hybrid PDF files and wish
to see how a PDF consumer that doesn't understand object and cross-reference streams would interpret such a file.

The --qdf flag turns on QDF mode, which changes some of the defaults described above. Specifically, in QDF mode,
by default, stream data is uncompressed, content streams are normalized, and encryption is removed. These defaults

Running QPDF

10

can still be overridden by specifying the appropriate options as described above. Additionally, in QDF mode, stream
lengths are stored as indirect objects, objects are laid out in a less efficient but more readable fashion, and the documents
are interspersed with comments that make it easier for the user to find things and also make it possible for fix-qdf to
work properly. QDF mode is intended for people, mostly developers, who wish to inspect or modify PDF files in a
text editor. For details, please see Chapter 4, QDF Mode, page 12.

3.6. Testing, Inspection, and Debugging
Options
These options can be useful for digging into PDF files or for use in automated test suites for software that uses the qpdf
library. When any of the options in this section are specified, no output file should be given. The following options
are available:

--deterministic-id
Causes generation of a deterministic value for /ID. This prevents use of timestamp and output file name
information in the /ID generation. Instead, at some slight additional runtime cost, the /ID field is generated to
include a digest of the significant parts of the content of the output PDF file. This means that a given qpdf operation
should generate the same /ID each time it is run, which can be useful when caching results or for generation of
some test data. Use of this flag is not compatible with creation of encrypted files.

--static-id
Causes generation of a fixed value for /ID. This is intended for testing only. Never use it for production files. If
you are trying to get the same /ID each time for a given file and you are not generating encrypted files, consider
using the --deterministic-id option.

--static-aes-iv
Causes use of a static initialization vector for AES-CBC. This is intended for testing only so that output files
can be reproducible. Never use it for production files. This option in particular is not secure since it significantly
weakens the encryption.

--no-original-object-ids
Suppresses inclusion of original object ID comments in QDF files. This can be useful when generating QDF files
for test purposes, particularly when comparing them to determine whether two PDF files have identical content.

--show-encryption
Shows document encryption parameters. Also shows the document's user password if the owner password is given.

--check-linearization
Checks file integrity and linearization status.

--show-linearization
Checks and displays all data in the linearization hint tables.

--show-xref
Shows the contents of the cross-reference table in a human-readable form. This is especially useful for files with
cross-reference streams which are stored in a binary format.

--show-object=obj[,gen]
Show the contents of the given object. This is especially useful for inspecting objects that are inside of object
streams (also known as “compressed objects”).

--raw-stream-data
When used along with the --show-object option, if the object is a stream, shows the raw stream data instead of
object's contents.

Running QPDF

11

--filtered-stream-data
When used along with the --show-object option, if the object is a stream, shows the filtered stream data instead
of object's contents. If the stream is filtered using filters that qpdf does not support, an error will be issued.

--show-npages
Prints the number of pages in the input file on a line by itself. Since the number of pages appears by itself on a
line, this option can be useful for scripting if you need to know the number of pages in a file.

--show-pages
Shows the object and generation number for each page dictionary object and for each content stream associated
with the page. Having this information makes it more convenient to inspect objects from a particular page.

--with-images
When used along with --show-pages, also shows the object and generation numbers for the image objects on each
page. (At present, information about images in shared resource dictionaries are not output by this command. This
is discussed in a comment in the source code.)

--check
Checks file structure and well as encryption, linearization, and encoding of stream data. A file for which --check
reports no errors may still have errors in stream data content but should otherwise be structurally sound. If --check
any errors, qpdf will exit with a status of 2. There are some recoverable conditions that --check detects. These
are issued as warnings instead of errors. If qpdf finds no errors but finds warnings, it will exit with a status of
3 (as of version 2.0.4).

The --raw-stream-data and --filtered-stream-data options are ignored unless --show-object is given. Either of these
options will cause the stream data to be written to standard output. In order to avoid commingling of stream data with
other output, it is recommend that these objects not be combined with other test/inspection options.

If --filtered-stream-data is given and --normalize-content=y is also given, qpdf will attempt to normalize the stream
data as if it is a page content stream. This attempt will be made even if it is not a page content stream, in which case
it will produce unusable results.

12

Chapter 4. QDF Mode
In QDF mode, qpdf creates PDF files in what we call QDF form. A PDF file in QDF form, sometimes called a QDF
file, is a completely valid PDF file that has %QDF-1.0 as its third line (after the pdf header and binary characters)
and has certain other characteristics. The purpose of QDF form is to make it possible to edit PDF files, with some
restrictions, in an ordinary text editor. This can be very useful for experimenting with different PDF constructs or for
making one-off edits to PDF files (though there are other reasons why this may not always work).

It is ordinarily very difficult to edit PDF files in a text editor for two reasons: most meaningful data in PDF files is
compressed, and PDF files are full of offset and length information that makes it hard to add or remove data. A QDF
file is organized in a manner such that, if edits are kept within certain constraints, the fix-qdf program, distributed with
qpdf, is able to restore edited files to a correct state. The fix-qdf program takes no command-line arguments. It reads
a possibly edited QDF file from standard input and writes a repaired file to standard output.

The following attributes characterize a QDF file:

• All objects appear in numerical order in the PDF file, including when objects appear in object streams.

• Objects are printed in an easy-to-read format, and all line endings are normalized to UNIX line endings.

• Unless specifically overridden, streams appear uncompressed (when qpdf supports the filters and they are
compressed with a non-lossy compression scheme), and most content streams are normalized (line endings are
converted to just a UNIX-style linefeeds).

• All streams lengths are represented as indirect objects, and the stream length object is always the next object after
the stream. If the stream data does not end with a newline, an extra newline is inserted, and a special comment
appears after the stream indicating that this has been done.

• If the PDF file contains object streams, if object stream n contains k objects, those objects are numbered from n
+1 through n+k, and the object number/offset pairs appear on a separate line for each object. Additionally, each
object in the object stream is preceded by a comment indicating its object number and index. This makes it very
easy to find objects in object streams.

• All beginnings of objects, stream tokens, endstream tokens, and endobj tokens appear on lines by themselves.
A blank line follows every endobj token.

• If there is a cross-reference stream, it is unfiltered.

• Page dictionaries and page content streams are marked with special comments that make them easy to find.

• Comments precede each object indicating the object number of the corresponding object in the original file.

When editing a QDF file, any edits can be made as long as the above constraints are maintained. This means that you
can freely edit a page's content without worrying about messing up the QDF file. It is also possible to add new objects
so long as those objects are added after the last object in the file or subsequent objects are renumbered. If a QDF file
has object streams in it, you can always add the new objects before the xref stream and then change the number of the
xref stream, since nothing generally ever references it by number.

It is not generally practical to remove objects from QDF files without messing up object numbering, but if you remove
all references to an object, you can run qpdf on the file (after running fix-qdf), and qpdf will omit the now-orphaned
object.

When fix-qdf is run, it goes through the file and recomputes the following parts of the file:

• the /N, /W, and /First keys of all object stream dictionaries

QDF Mode

13

• the pairs of numbers representing object numbers and offsets of objects in object streams

• all stream lengths

• the cross-reference table or cross-reference stream

• the offset to the cross-reference table or cross-reference stream following the startxref token

14

Chapter 5. Using the QPDF Library
The source tree for the qpdf package has an examples directory that contains a few example programs. The qpdf/
qpdf.cc source file also serves as a useful example since it exercises almost all of the qpdf library's public interface.
The best source of documentation on the library itself is reading comments in include/qpdf/QPDF.hh, include/qpdf/
QDFWriter.hh, and include/qpdf/QPDFObjectHandle.hh.

All header files are installed in the include/qpdf directory. It is recommend that you use #include <qpdf/
QPDF.hh> rather than adding include/qpdf to your include path.

When linking against the qpdf static library, you may also need to specify -lpcre -lz on your link command. If
your system understands how to read libtool .la files, this may not be necessary.

The qpdf library is safe to use in a multithreaded program, but no individual QPDF object instance (including QPDF,
QPDFObjectHandle, or QPDFWriter) can be used in more than one thread at a time. Multiple threads may
simultaneously work with different instances of these and all other QPDF objects.

15

Chapter 6. Design and Library Notes

6.1. Introduction
This section was written prior to the implementation of the qpdf package and was subsequently modified to reflect the
implementation. In some cases, for purposes of explanation, it may differ slightly from the actual implementation. As
always, the source code and test suite are authoritative. Even if there are some errors, this document should serve as
a road map to understanding how this code works.

In general, one should adhere strictly to a specification when writing but be liberal in reading. This way, the product
of our software will be accepted by the widest range of other programs, and we will accept the widest range of input
files. This library attempts to conform to that philosophy whenever possible but also aims to provide strict checking
for people who want to validate PDF files. If you don't want to see warnings and are trying to write something
that is tolerant, you can call setSuppressWarnings(true). If you want to fail on the first error, you can call
setAttemptRecovery(false). The default behavior is to generating warnings for recoverable problems. Note
that recovery will not always produce the desired results even if it is able to get through the file. Unlike most other PDF
files that produce generic warnings such as “This file is damaged,”, qpdf generally issues a detailed error message that
would be most useful to a PDF developer. This is by design as there seems to be a shortage of PDF validation tools
out there. (This was, in fact, one of the major motivations behind the initial creation of qpdf.)

6.2. Design Goals
The QPDF package includes support for reading and rewriting PDF files. It aims to hide from the user details involving
object locations, modified (appended) PDF files, the directness/indirectness of objects, and stream filters including
encryption. It does not aim to hide knowledge of the object hierarchy or content stream contents. Put another way, a
user of the qpdf library is expected to have knowledge about how PDF files work, but is not expected to have to keep
track of bookkeeping details such as file positions.

A user of the library never has to care whether an object is direct or indirect. All access to objects deals with this
transparently. All memory management details are also handled by the library.

The PointerHolder object is used internally by the library to deal with memory management. This is basically a
smart pointer object very similar in spirit to the Boost library's shared_ptr object, but predating it by several years.
This library also makes use of a technique for giving fine-grained access to methods in one class to other classes by
using public subclasses with friends and only private members that in turn call private methods of the containing class.
See QPDFObjectHandle::Factory as an example.

The top-level qpdf class is QPDF. A QPDF object represents a PDF file. The library provides methods for both
accessing and mutating PDF files.

QPDFObject is the basic PDF Object class. It is an abstract base class from which are derived classes for each type
of PDF object. Clients do not interact with Objects directly but instead interact with QPDFObjectHandle.

QPDFObjectHandle contains PointerHolder<QPDFObject> and includes accessor methods that are type-safe
proxies to the methods of the derived object classes as well as methods for querying object types. They can be passed
around by value, copied, stored in containers, etc. with very low overhead. Instances of QPDFObjectHandle always
contain a reference back to the QPDF object from which they were created. A QPDFObjectHandle may be direct
or indirect. If indirect, the QPDFObject the PointerHolder initially points to is a null pointer. In this case, the
first attempt to access the underlying QPDFObject will result in the QPDFObject being resolved via a call to the
referenced QPDF instance. This makes it essentially impossible to make coding errors in which certain things will
work for some PDF files and not for others based on which objects are direct and which objects are indirect.

Design and Library Notes

16

Instances of QPDFObjectHandle can be directly created and modified using static factory methods in the
QPDFObjectHandle class. There are factory methods for each type of object as well as a convenience method
QPDFObjectHandle::parse that creates an object from a string representation of the object. Existing instances of
QPDFObjectHandle can also be modified in several ways. See comments in QPDFObjectHandle.hh for details.

When the QPDF class creates a new object, it dynamically allocates the appropriate type of QPDFObject and
immediately hands the pointer to an instance of QPDFObjectHandle. The parser reads a token from the current
file position. If the token is a not either a dictionary or array opener, an object is immediately constructed from
the single token and the parser returns. Otherwise, the parser is invoked recursively in a special mode in which it
accumulates objects until it finds a balancing closer. During this process, the “R” keyword is recognized and an indirect
QPDFObjectHandle may be constructed.

The QPDF::resolve() method, which is used to resolve an indirect object, may be invoked from the
QPDFObjectHandle class. It first checks a cache to see whether this object has already been read. If not, it reads the
object from the PDF file and caches it. It the returns the resulting QPDFObjectHandle. The calling object handle
then replaces its PointerHolder<QDFObject> with the one from the newly returned QPDFObjectHandle. In this
way, only a single copy of any direct object need exist and clients can access objects transparently without knowing
caring whether they are direct or indirect objects. Additionally, no object is ever read from the file more than once. That
means that only the portions of the PDF file that are actually needed are ever read from the input file, thus allowing
the qpdf package to take advantage of this important design goal of PDF files.

If the requested object is inside of an object stream, the object stream itself is first read into memory. Then the tokenizer
reads objects from the memory stream based on the offset information stored in the stream. Those individual objects
are cached, after which the temporary buffer holding the object stream contents are discarded. In this way, the first
time an object in an object stream is requested, all objects in the stream are cached.

An instance of QPDF is constructed by using the class's default constructor. If desired, the QPDF object may be
configured with various methods that change its default behavior. Then the QPDF::processFile() method is passed
the name of a PDF file, which permanently associates the file with that QPDF object. A password may also be given
for access to password-protected files. QPDF does not enforce encryption parameters and will treat user and owner
passwords equivalently. Either password may be used to access an encrypted file. 1 QPDF will allow recovery of a
user password given an owner password. The input PDF file must be seekable. (Output files written by QPDFWriter
need not be seekable, even when creating linearized files.) During construction, QPDF validates the PDF file's header,
and then reads the cross reference tables and trailer dictionaries. The QPDF class keeps only the first trailer dictionary
though it does read all of them so it can check the /Prev key. QPDF class users may request the root object and
the trailer dictionary specifically. The cross reference table is kept private. Objects may then be requested by number
of by walking the object tree.

When a PDF file has a cross-reference stream instead of a cross-reference table and trailer, requesting the document's
trailer dictionary returns the stream dictionary from the cross-reference stream instead.

There are some convenience routines for very common operations such as walking the page tree and returning a vector
of all page objects. For full details, please see the header file QPDF.hh.

The following example should clarify how QPDF processes a simple file.

• Client constructs QPDF pdf and calls pdf.processFile("a.pdf");.

• The QPDF class checks the beginning of a.pdf for %!PDF-1.[0-9]+. It then reads the cross reference table
mentioned at the end of the file, ensuring that it is looking before the last %%EOF. After getting to trailer
keyword, it invokes the parser.

1 As pointed out earlier, the intention is not for qpdf to be used to bypass security on files. but as any open source PDF consumer may be easily
modified to bypass basic PDF document security, and qpdf offers may transformations that can do this as well, there seems to be little point in the
added complexity of conditionally enforcing document security.

Design and Library Notes

17

• The parser sees “<<”, so it calls itself recursively in dictionary creation mode.

• In dictionary creation mode, the parser keeps accumulating objects until it encounters “>>”. Each object that is
read is pushed onto a stack. If “R” is read, the last two objects on the stack are inspected. If they are integers,
they are popped off the stack and their values are used to construct an indirect object handle which is then pushed
onto the stack. When “>>” is finally read, the stack is converted into a QPDF_Dictionary which is placed in a
QPDFObjectHandle and returned.

• The resulting dictionary is saved as the trailer dictionary.

• The /Prev key is searched. If present, QPDF seeks to that point and repeats except that the new trailer dictionary
is not saved. If /Prev is not present, the initial parsing process is complete.

If there is an encryption dictionary, the document's encryption parameters are initialized.

• The client requests root object. The QPDF class gets the value of root key from trailer dictionary and returns it. It
is an unresolved indirect QPDFObjectHandle.

• The client requests the /Pages key from root QPDFObjectHandle. The QPDFObjectHandle notices that it
is indirect so it asks QPDF to resolve it. QPDF looks in the object cache for an object with the root dictionary's
object ID and generation number. Upon not seeing it, it checks the cross reference table, gets the offset, and reads
the object present at that offset. It stores the result in the object cache and returns the cached result. The calling
QPDFObjectHandle replaces its object pointer with the one from the resolved QPDFObjectHandle, verifies
that it a valid dictionary object, and returns the (unresolved indirect) QPDFObject handle to the top of the Pages
hierarchy.

As the client continues to request objects, the same process is followed for each new requested object.

6.3. Casting Policy
This section describes the casting policy followed by qpdf's implementation. This is no concern to qpdf's end users
and largely of no concern to people writing code that uses qpdf, but it could be of interest to people who are porting
qpdf to a new platform or who are making modifications to the code.

The C++ code in qpdf is free of old-style casts except where unavoidable (e.g. where the old-style cast is in a macro
provided by a third-party header file). When there is a need for a cast, it is handled, in order of preference, by rewriting
the code to avoid the need for a cast, calling const_cast, calling static_cast, calling reinterpret_cast, or calling some
combination of the above. As a last resort, a compiler-specific #pragma may be used to suppress a warning that we
don't want to fix. Examples may include suppressing warnings about the use of old-style casts in code that is shared
between C and C++ code.

The casting policy explicitly prohibits casting between integer sizes for no purpose other than to quiet a compiler
warning when there is no reasonable chance of a problem resulting. The reason for this exclusion is that the practice
of adding these additional casts precludes future use of additional compiler warnings as a tool for making future
improvements to this aspect of the code, and it also damages the readability of the code.

There are a few significant areas where casting is common in the qpdf sources or where casting would be required to
quiet higher levels of compiler warnings but is omitted at present:

• char vs. unsigned char. For historical reasons, there are a lot of places in qpdf's internals that deal with
unsigned char, which means that a lot of casting is required to interoperate with standard library calls and
std::string. In retrospect, qpdf should have probably used regular (signed) char and char* everywhere and
just cast to unsigned char when needed, but it's too late to make that change now. There are reinterpret_cast
calls to go between char* and unsigned char*, and there are static_cast calls to go between char and
unsigned char. These should always be safe.

Design and Library Notes

18

• Non-const unsigned char* used in the Pipeline interface. The pipeline interface has a write call that uses
unsigned char* without a const qualifier. The main reason for this is to support pipelines that make calls to
third-party libraries, such as zlib, that don't include const in their interfaces. Unfortunately, there are many places
in the code where it is desirable to have const char* with pipelines. None of the pipeline implementations in
qpdf currently modify the data passed to write, and doing so would be counter to the intent of Pipeline, but there
is nothing in the code to prevent this from being done. There are places in the code where const_cast is used to
remove the const-ness of pointers going into Pipelines. This could theoretically be unsafe, but there is adequate
testing to assert that it is safe and will remain safe in qpdf's code.

• size_t vs. qpdf_offset_t. This is pretty much unavoidable since sizes are unsigned types and offsets are
signed types. Whenever it is necessary to seek by an amount given by a size_t, it becomes necessary to mix and
match between size_t and qpdf_offset_t. Additionally, qpdf sometimes treats memory buffers like files (as
with BufferInputSource, and those seek interfaces have to be consistent with file-based input sources. Neither
gcc nor MSVC give warnings for this case by default, but both have warning flags that can enable this. (MSVC:
/W14267 or /W3, which also enables some additional warnings that we ignore; gcc: -Wconversion -Wsign-
conversion). This could matter for files whose sizes are larger than 263 bytes, but it is reasonable to expect that a
world where such files are common would also have larger size_t and qpdf_offset_t types in it. On most
64-bit systems at the time of this writing (the release of version 4.1.0 of qpdf), both size_t and qpdf_offset_t
are 64-bit integer types, while on many current 32-bit systems, size_t is a 32-bit type while qpdf_offset_t is
a 64-bit type. I am not aware of any cases where 32-bit systems that have size_t smaller than qpdf_offset_t
could run into problems. Although I can't conclusively rule out the possibility of such problems existing, I suspect
any cases would be pretty contrived. In the event that someone should produce a file that qpdf can't handle because
of what is suspected to be issues involving the handling of size_t vs. qpdf_offset_t (such files may behave
properly on 64-bit systems but not on 32-bit systems because they have very large embedded files or streams, for
example), the above mentioned warning flags could be enabled and all those implicit conversions could be carefully
scrutinized. (I have already gone through that exercise once in adding support for files larger than 4 GB in size.) I
continue to be committed to supporting large files on 32-bit systems, but I would not go to any lengths to support
corner cases involving large embedded files or large streams that work on 64-bit systems but not on 32-bit systems
because of size_t being too small. It is reasonable to assume that anyone working with such files would be using
a 64-bit system anyway since many 32-bit applications would have similar difficulties.

• size_t vs. int or long. There are some cases where size_t and int or long or size_t and unsigned
int or unsigned long are used interchangeably. These cases occur when working with very small amounts of
memory, such as with the bit readers (where we're working with just a few bytes at a time), some cases of strlen, and
a few other cases. I have scrutinized all of these cases and determined them to be safe, but there is no mechanism in
the code to ensure that new unsafe conversions between int and size_t aren't introduced short of good testing
and strong awareness of the issues. Again, if any such bugs are suspected in the future, enabling the additional
warning flags and scrutinizing the warnings would be in order.

To be clear, I believe qpdf to be well-behaved with respect to sizes and offsets, and qpdf's test suite includes actual
generation and full processing of files larger than 4 GB in size. The issues raised here are largely academic and should
not in any way be interpreted to mean that qpdf has practical problems involving sloppiness with integer types. I also
believe that appropriate measures have been taken in the code to avoid problems with signed vs. unsigned integers
from resulting in memory overwrites or other issues with potential security implications, though there are never any
absolute guarantees.

6.4. Encryption
Encryption is supported transparently by qpdf. When opening a PDF file, if an encryption dictionary exists, the QPDF
object processes this dictionary using the password (if any) provided. The primary decryption key is computed and
cached. No further access is made to the encryption dictionary after that time. When an object is read from a file, the
object ID and generation of the object in which it is contained is always known. Using this information along with
the stored encryption key, all stream and string objects are transparently decrypted. Raw encrypted objects are never
stored in memory. This way, nothing in the library ever has to know or care whether it is reading an encrypted file.

Design and Library Notes

19

An interface is also provided for writing encrypted streams and strings given an encryption key. This is used by
QPDFWriter when it rewrites encrypted files.

When copying encrypted files, unless otherwise directed, qpdf will preserve any encryption in force in the original
file. qpdf can do this with either the user or the owner password. There is no difference in capability based on which
password is used. When 40 or 128 bit encryption keys are used, the user password can be recovered with the owner
password. With 256 keys, the user and owner passwords are used independently to encrypt the actual encryption key,
so while either can be used, the owner password can no longer be used to recover the user password.

Starting with version 4.0.0, qpdf can read files that are not encrypted but that contain encrypted attachments, but it
cannot write such files. qpdf also requires the password to be specified in order to open the file, not just to extract
attachments, since once the file is open, all decryption is handled transparently. When copying files like this while
preserving encryption, qpdf will apply the file's encryption to everything in the file, not just to the attachments. When
decrypting the file, qpdf will decrypt the attachments. In general, when copying PDF files with multiple encryption
formats, qpdf will choose the newest format. The only exception to this is that clear-text metadata will be preserved
as clear-text if it is that way in the original file.

6.5. Random Number Generation
QPDF generates random numbers to support generation of encrypted data. Versions prior to 5.0.1 used random or rand
from stdlib to generate random numbers. Version 5.0.1, if available, used operating system-provided secure random
number generation instead, enabling use of stdlib random number generation only if enabled by a compile-time option.
Starting in version 5.1.0, use of insecure random numbers was disabled unless enabled at compile time. Starting in
version 5.1.0, it is also possible for you to disable use of OS-provided secure random numbers. This is especially
useful on Windows if you want to avoid a dependency on Microsoft's cryptography API. In this case, you must provide
your own random data provider. Regardless of how you compile qpdf, starting in version 5.1.0, it is possible for you
to provide your own random data provider at runtime. This would enable you to use some software-based secure
pseudorandom number generator and to avoid use of whatever the operating system provides. For details on how to
do this, please refer to the top-level README file in the source distribution and to comments in QUtil.hh.

6.6. Adding and Removing Pages
While qpdf's API has supported adding and modifying objects for some time, version 3.0 introduces specific methods
for adding and removing pages. These are largely convenience routines that handle two tricky issues: pushing
inheritable resources from the /Pages tree down to individual pages and manipulation of the /Pages tree itself. For
details, see addPage and surrounding methods in QPDF.hh.

6.7. Reserving Object Numbers
Version 3.0 of qpdf introduced the concept of reserved objects. These are seldom needed for ordinary operations, but
there are cases in which you may want to add a series of indirect objects with references to each other to a QPDF object.
This causes a problem because you can't determine the object ID that a new indirect object will have until you add it to
the QPDF object with QPDF::makeIndirectObject. The only way to add two mutually referential objects to a QPDF
object prior to version 3.0 would be to add the new objects first and then make them refer to each other after adding
them. Now it is possible to create a reserved object using QPDFObjectHandle::newReserved. This is an indirect object
that stays “unresolved” even if it is queried for its type. So now, if you want to create a set of mutually referential
objects, you can create reservations for each one of them and use those reservations to construct the references. When
finished, you can call QPDF::replaceReserved to replace the reserved objects with the real ones. This functionality
will never be needed by most applications, but it is used internally by QPDF when copying objects from other PDF
files, as discussed in Section 6.8, “Copying Objects From Other PDF Files”, page 20. For an example of how to
use reserved objects, search for newReserved in test_driver.cc in qpdf's sources.

Design and Library Notes

20

6.8. Copying Objects From Other PDF Files
Version 3.0 of qpdf introduced the ability to copy objects into a QPDF object from a different QPDF object, which
we refer to as foreign objects. This allows arbitrary merging of PDF files. The qpdf command-line tool provides
limited support for basic page selection, including merging in pages from other files, but the library's API makes
it possible to implement arbitrarily complex merging operations. The main method for copying foreign objects is
QPDF::copyForeignObject. This takes an indirect object from another QPDF and copies it recursively into this object
while preserving all object structure, including circular references. This means you can add a direct object that you
create from scratch to a QPDF object with QPDF::makeIndirectObject, and you can add an indirect object from
another file with QPDF::copyForeignObject. The fact that QPDF::makeIndirectObject does not automatically detect
a foreign object and copy it is an explicit design decision. Copying a foreign object seems like a sufficiently significant
thing to do that it should be done explicitly.

The other way to copy foreign objects is by passing a page from one QPDF to another by calling QPDF::addPage.
In contrast to QPDF::makeIndirectObject, this method automatically distinguishes between indirect objects in the
current file, foreign objects, and direct objects.

6.9. Writing PDF Files
The qpdf library supports file writing of QPDF objects to PDF files through the QPDFWriter class. The
QPDFWriter class has two writing modes: one for non-linearized files, and one for linearized files. See Chapter 7,
Linearization, page 22 for a description of linearization is implemented. This section describes how we write non-
linearized files including the creation of QDF files (see Chapter 4, QDF Mode, page 12.

This outline was written prior to implementation and is not exactly accurate, but it provides a correct “notional” idea
of how writing works. Look at the code in QPDFWriter for exact details.

• Initialize state:

• next object number = 1

• object queue = empty

• renumber table: old object id/generation to new id/0 = empty

• xref table: new id -> offset = empty

• Create a QPDF object from a file.

• Write header for new PDF file.

• Request the trailer dictionary.

• For each value that is an indirect object, grab the next object number (via an operation that returns and increments
the number). Map object to new number in renumber table. Push object onto queue.

• While there are more objects on the queue:

• Pop queue.

• Look up object's new number n in the renumbering table.

• Store current offset into xref table.

• Write n 0 obj.

Design and Library Notes

21

• If object is null, whether direct or indirect, write out null, thus eliminating unresolvable indirect object references.

• If the object is a stream stream, write stream contents, piped through any filters as required, to a memory buffer.
Use this buffer to determine the stream length.

• If object is not a stream, array, or dictionary, write out its contents.

• If object is an array or dictionary (including stream), traverse its elements (for array) or values (for dictionaries),
handling recursive dictionaries and arrays, looking for indirect objects. When an indirect object is found, if it is
not resolvable, ignore. (This case is handled when writing it out.) Otherwise, look it up in the renumbering table.
If not found, grab the next available object number, assign to the referenced object in the renumbering table, and
push the referenced object onto the queue. As a special case, when writing out a stream dictionary, replace length,
filters, and decode parameters as required.

Write out dictionary or array, replacing any unresolvable indirect object references with null (pdf spec says
reference to non-existent object is legal and resolves to null) and any resolvable ones with references to the
renumbered objects.

• If the object is a stream, write stream\n, the stream contents (from the memory buffer), and \nendstream\n.

• When done, write endobj.

Once we have finished the queue, all referenced objects will have been written out and all deleted objects or
unreferenced objects will have been skipped. The new cross-reference table will contain an offset for every new object
number from 1 up to the number of objects written. This can be used to write out a new xref table. Finally we can
write out the trailer dictionary with appropriately computed /ID (see spec, 8.3, File Identifiers), the cross reference
table offset, and %%EOF.

6.10. Filtered Streams
Support for streams is implemented through the Pipeline interface which was designed for this package.

When reading streams, create a series of Pipeline objects. The Pipeline abstract base requires implementation write()
and finish() and provides an implementation of getNext(). Each pipeline object, upon receiving data, does whatever it
is going to do and then writes the data (possibly modified) to its successor. Alternatively, a pipeline may be an end-
of-the-line pipeline that does something like store its output to a file or a memory buffer ignoring a successor. For
additional details, look at Pipeline.hh.

QPDF can read raw or filtered streams. When reading a filtered stream, the QPDF class creates a Pipeline object for
one of each appropriate filter object and chains them together. The last filter should write to whatever type of output
is required. The QPDF class has an interface to write raw or filtered stream contents to a given pipeline.

22

Chapter 7. Linearization
This chapter describes how QPDF and QPDFWriter implement creation and processing of linearized PDFS.

7.1. Basic Strategy for Linearization
To avoid the incestuous problem of having the qpdf library validate its own linearized files, we have a special linearized
file checking mode which can be invoked via qpdf --check-linearization (or qpdf --check). This mode reads the
linearization parameter dictionary and the hint streams and validates that object ordering, parameters, and hint stream
contents are correct. The validation code was first tested against linearized files created by external tools (Acrobat and
pdlin) and then used to validate files created by QPDFWriter itself.

7.2. Preparing For Linearization
Before creating a linearized PDF file from any other PDF file, the PDF file must be altered such that all page attributes
are propagated down to the page level (and not inherited from parents in the /Pages tree). We also have to know
which objects refer to which other objects, being concerned with page boundaries and a few other cases. We refer to
this part of preparing the PDF file as optimization, discussed in Section 7.3, “Optimization”, page 22. Note the, in
this context, the term optimization is a qpdf term, and the term linearization is a term from the PDF specification. Do
not be confused by the fact that many applications refer to linearization as optimization or web optimization.

When creating linearized PDF files from optimized PDF files, there are really only a few issues that need to be dealt
with:

• Creation of hints tables

• Placing objects in the correct order

• Filling in offsets and byte sizes

7.3. Optimization
In order to perform various operations such as linearization and splitting files into pages, it is necessary to know which
objects are referenced by which pages, page thumbnails, and root and trailer dictionary keys. It is also necessary to
ensure that all page-level attributes appear directly at the page level and are not inherited from parents in the pages tree.

We refer to the process of enforcing these constraints as optimization. As mentioned above, note that some applications
refer to linearization as optimization. Although this optimization was initially motivated by the need to create linearized
files, we are using these terms separately.

PDF file optimization is implemented in the QPDF_optimization.cc source file. That file is richly commented and
serves as the primary reference for the optimization process.

After optimization has been completed, the private member variables obj_user_to_objects and object_to_obj_users in
QPDF have been populated. Any object that has more than one value in the object_to_obj_users table is shared. Any
object that has exactly one value in the object_to_obj_users table is private. To find all the private objects in a page or
a trailer or root dictionary key, one merely has make this determination for each element in the obj_user_to_objects
table for the given page or key.

Note that pages and thumbnails have different object user types, so the above test on a page will not include objects
referenced by the page's thumbnail dictionary and nothing else.

Linearization

23

7.4. Writing Linearized Files
We will create files with only primary hint streams. We will never write overflow hint streams. (As of PDF version 1.4,
Acrobat doesn't either, and they are never necessary.) The hint streams contain offset information to objects that point
to where they would be if the hint stream were not present. This means that we have to calculate all object positions
before we can generate and write the hint table. This means that we have to generate the file in two passes. To make
this reliable, QPDFWriter in linearization mode invokes exactly the same code twice to write the file to a pipeline.

In the first pass, the target pipeline is a count pipeline chained to a discard pipeline. The count pipeline simply passes
its data through to the next pipeline in the chain but can return the number of bytes passed through it at any intermediate
point. The discard pipeline is an end of line pipeline that just throws its data away. The hint stream is not written and
dummy values with adequate padding are stored in the first cross reference table, linearization parameter dictionary,
and /Prev key of the first trailer dictionary. All the offset, length, object renumbering information, and anything else
we need for the second pass is stored.

At the end of the first pass, this information is passed to the QPDF class which constructs a compressed hint stream
in a memory buffer and returns it. QPDFWriter uses this information to write a complete hint stream object into a
memory buffer. At this point, the length of the hint stream is known.

In the second pass, the end of the pipeline chain is a regular file instead of a discard pipeline, and we have known values
for all the offsets and lengths that we didn't have in the first pass. We have to adjust offsets that appear after the start of
the hint stream by the length of the hint stream, which is known. Anything that is of variable length is padded, with the
padding code surrounding any writing code that differs in the two passes. This ensures that changes to the way things
are represented never results in offsets that were gathered during the first pass becoming incorrect for the second pass.

Using this strategy, we can write linearized files to a non-seekable output stream with only a single pass to disk or
wherever the output is going.

7.5. Calculating Linearization Data
Once a file is optimized, we have information about which objects access which other objects. We can then process
these tables to decide which part (as described in “Linearized PDF Document Structure” in the PDF specification)
each object is contained within. This tells us the exact order in which objects are written. The QPDFWriter class
asks for this information and enqueues objects for writing in the proper order. It also turns on a check that causes an
exception to be thrown if an object is encountered that has not already been queued. (This could happen only if there
were a bug in the traversal code used to calculate the linearization data.)

7.6. Known Issues with Linearization
There are a handful of known issues with this linearization code. These issues do not appear to impact the behavior of
linearized files which still work as intended: it is possible for a web browser to begin to display them before they are
fully downloaded. In fact, it seems that various other programs that create linearized files have many of these same
issues. These items make reference to terminology used in the linearization appendix of the PDF specification.

• Thread Dictionary information keys appear in part 4 with the rest of Threads instead of in part 9. Objects in part
9 are not grouped together functionally.

• We are not calculating numerators for shared object positions within content streams or interleaving them within
content streams.

• We generate only page offset, shared object, and outline hint tables. It would be relatively easy to add some additional
tables. We gather most of the information needed to create thumbnail hint tables. There are comments in the code
about this.

Linearization

24

7.7. Debugging Note
The qpdf --show-linearization command can show the complete contents of linearization hint streams. To look at the
raw data, you can extract the filtered contents of the linearization hint tables using qpdf --show-object=n --filtered-
stream-data. Then, to convert this into a bit stream (since linearization tables are bit streams written without regard
to byte boundaries), you can pipe the resulting data through the following perl code:

use bytes;
binmode STDIN;
undef $/;
my $a = <STDIN>;
my @ch = split(//, $a);
map { printf("%08b", ord($_)) } @ch;
print "\n";

25

Chapter 8. Object and Cross-Reference
Streams
This chapter provides information about the implementation of object stream and cross-reference stream support in
qpdf.

8.1. Object Streams
Object streams can contain any regular object except the following:

• stream objects

• objects with generation > 0

• the encryption dictionary

• objects containing the /Length of another stream

In addition, Adobe reader (at least as of version 8.0.0) appears to not be able to handle having the document catalog
appear in an object stream if the file is encrypted, though this is not specifically disallowed by the specification.

There are additional restrictions for linearized files. See Section 8.3, “Implications for Linearized Files”, page 26for
details.

The PDF specification refers to objects in object streams as “compressed objects” regardless of whether the object
stream is compressed.

The generation number of every object in an object stream must be zero. It is possible to delete and replace an object
in an object stream with a regular object.

The object stream dictionary has the following keys:

• /N: number of objects

• /First: byte offset of first object

• /Extends: indirect reference to stream that this extends

Stream collections are formed with /Extends. They must form a directed acyclic graph. These can be used for
semantic information and are not meaningful to the PDF document's syntactic structure. Although qpdf preserves
stream collections, it never generates them and doesn't make use of this information in any way.

The specification recommends limiting the number of objects in object stream for efficiency in reading and decoding.
Acrobat 6 uses no more than 100 objects per object stream for linearized files and no more 200 objects per stream for
non-linearized files. QPDFWriter, in object stream generation mode, never puts more than 100 objects in an object
stream.

Object stream contents consists of N pairs of integers, each of which is the object number and the byte offset of the
object relative to the first object in the stream, followed by the objects themselves, concatenated.

8.2. Cross-Reference Streams
For non-hybrid files, the value following startxref is the byte offset to the xref stream rather than the word xref.

Object and Cross-Reference Streams

26

For hybrid files (files containing both xref tables and cross-reference streams), the xref table's trailer dictionary contains
the key /XRefStm whose value is the byte offset to a cross-reference stream that supplements the xref table. A
PDF 1.5-compliant application should read the xref table first. Then it should replace any object that it has already
seen with any defined in the xref stream. Then it should follow any /Prev pointer in the original xref table's trailer
dictionary. The specification is not clear about what should be done, if anything, with a /Prev pointer in the xref
stream referenced by an xref table. The QPDF class ignores it, which is probably reasonable since, if this case were
to appear for any sensible PDF file, the previous xref table would probably have a corresponding /XRefStm pointer
of its own. For example, if a hybrid file were appended, the appended section would have its own xref table and /
XRefStm. The appended xref table would point to the previous xref table which would point the /XRefStm, meaning
that the new /XRefStm doesn't have to point to it.

Since xref streams must be read very early, they may not be encrypted, and the may not contain indirect objects for
keys required to read them, which are these:

• /Type: value /XRef

• /Size: value n+1: where n is highest object number (same as /Size in the trailer dictionary)

• /Index (optional): value [n count ...] used to determine which objects' information is stored in this stream.
The default is [0 /Size].

• /Prev: value offset: byte offset of previous xref stream (same as /Prev in the trailer dictionary)

• /W [...]: sizes of each field in the xref table

The other fields in the xref stream, which may be indirect if desired, are the union of those from the xref table's trailer
dictionary.

8.2.1. Cross-Reference Stream Data
The stream data is binary and encoded in big-endian byte order. Entries are concatenated, and each entry has a length
equal to the total of the entries in /W above. Each entry consists of one or more fields, the first of which is the type of
the field. The number of bytes for each field is given by /W above. A 0 in /W indicates that the field is omitted and
has the default value. The default value for the field type is “1”. All other default values are “0”.

PDF 1.5 has three field types:

• 0: for free objects. Format: 0 obj next-generation, same as the free table in a traditional cross-reference table

• 1: regular non-compressed object. Format: 1 offset generation

• 2: for objects in object streams. Format: 2 object-stream-number index, the number of object stream
containing the object and the index within the object stream of the object.

It seems standard to have the first entry in the table be 0 0 0 instead of 0 0 ffff if there are no deleted objects.

8.3. Implications for Linearized Files
For linearized files, the linearization dictionary, document catalog, and page objects may not be contained in object
streams.

Objects stored within object streams are given the highest range of object numbers within the main and first-page
cross-reference sections.

It is okay to use cross-reference streams in place of regular xref tables. There are on special considerations.

Object and Cross-Reference Streams

27

Hint data refers to object streams themselves, not the objects in the streams. Shared object references should also be
made to the object streams. There are no reference in any hint tables to the object numbers of compressed objects
(objects within object streams).

When numbering objects, all shared objects within both the first and second halves of the linearized files must be
numbered consecutively after all normal uncompressed objects in that half.

8.4. Implementation Notes
There are three modes for writing object streams: disable, preserve, and generate. In disable mode, we do not generate
any object streams, and we also generate an xref table rather than xref streams. This can be used to generate PDF
files that are viewable with older readers. In preserve mode, we write object streams such that written object streams
contain the same objects and /Extends relationships as in the original file. This is equal to disable if the file has no
object streams. In generate, we create object streams ourselves by grouping objects that are allowed in object streams
together in sets of no more than 100 objects. We also ensure that the PDF version is at least 1.5 in generate mode, but
we preserve the version header in the other modes. The default is preserve.

We do not support creation of hybrid files. When we write files, even in preserve mode, we will lose any xref tables
and merge any appended sections.

28

Appendix A. Release Notes
For a detailed list of changes, please see the file ChangeLog in the source distribution.

6.0.0: November 10, 2015

• Implement --deterministic-id command-line option and QPDFWriter::setDeterministicID as well as C API
function qpdf_set_deterministic_ID for generating a deterministic ID for non-encrypted files. When this option
is selected, the ID of the file depends on the contents of the output file, and not on transient items such as the
timestamp or output file name.

• Make qpdf more tolerant of files whose xref table entries are not the correct length.

5.1.3: May 24, 2015

• Bug fix: fix-qdf was not properly handling files that contained object streams with more than 255 objects in
them.

• Bug fix: qpdf was not properly initializing Microsoft's secure crypto provider on fresh Windows installations
that had not had any keys created yet.

• Fix a few errors found by Gynvael Coldwind and Mateusz Jurczyk of the Google Security Team. Please see
the ChangeLog for details.

• Properly handle pages that have no contents at all. There were many cases in which qpdf handled this fine, but
a few methods blindly obtained page contents with handling the possibility that there were no contents.

• Make qpdf more robust for a few more kinds of problems that may occur in invalid PDF files.

5.1.2: June 7, 2014

• Bug fix: linearizing files could create a corrupted output file under extremely unlikely file size circumstances.
See ChangeLog for details. The odds of getting hit by this are very low, though one person did.

• Bug fix: qpdf would fail to write files that had streams with decode parameters referencing other streams.

• New example program: pdf-split-pages: efficiently split PDF files into individual pages. The example program
does this more efficiently than using qpdf --pages to do it.

• Packaging fix: Visual C++ binaries did not support Windows XP. This has been rectified by updating the
compilers used to generate the release binaries.

5.1.1: January 14, 2014

• Performance fix: copying foreign objects could be very slow with certain types of files. This was most likely
to be visible during page splitting and was due to traversing the same objects multiple times in some cases.

5.1.0: December 17, 2013

• Added runtime option (QUtil::setRandomDataProvider) to supply your own random data provider. You can
use this if you want to avoid using the OS-provided secure random number generation facility or stdlib's less
secure version. See comments in include/qpdf/QUtil.hh for details.

• Fixed image comparison tests to not create 12-bit-per-pixel images since some versions of tiffcmp have bugs
in comparing them in some cases. This increases the disk space required by the image comparison tests, which
are off by default anyway.

Release Notes

29

• Introduce a number of small fixes for compilation on the latest clang in MacOS and the latest Visual C++ in
Windows.

• Be able to handle broken files that end the xref table header with a space instead of a newline.

5.0.1: October 18, 2013

• Thanks to a detailed review by Florian Weimer and the Red Hat Product Security Team, this release includes a
number of non-user-visible security hardening changes. Please see the ChangeLog file in the source distribution
for the complete list.

• When available, operating system-specific secure random number generation is used for generating
initialization vectors and other random values used during encryption or file creation. For the Windows build,
this results in an added dependency on Microsoft's cryptography API. To disable the OS-specific cryptography
and use the old version, pass the --enable-insecure-random option to ./configure.

• The qpdf command-line tool now issues a warning when -accessibility=n is specified for newer encryption
versions stating that the option is ignored. qpdf, per the spec, has always ignored this flag, but it previously
did so silently. This warning is issued only by the command-line tool, not by the library. The library's handling
of this flag is unchanged.

5.0.0: July 10, 2013

• Bug fix: previous versions of qpdf would lose objects with generation != 0 when generating object streams.
Fixing this required changes to the public API.

• Removed methods from public API that were only supposed to be called by QPDFWriter and couldn't
realistically be called anywhere else. See ChangeLog for details.

• New QPDFObjGen class added to represent an object ID/generation pair. QPDFObjectHandle::getObjGen() is
now preferred over QPDFObjectHandle::getObjectID() and QPDFObjectHandle::getGeneration() as it makes
it less likely for people to accidentally write code that ignores the generation number. See QPDF.hh and
QPDFObjectHandle.hh for additional notes.

• Add --show-npages command-line option to the qpdf command to show the number of pages in a file.

• Allow omission of the page range within --pages for the qpdf command. When omitted, the page range is
implicitly taken to be all the pages in the file.

• Various enhancements were made to support different types of broken files or broken readers. Details can be
found in ChangeLog.

4.1.0: April 14, 2013

• Note to people including qpdf in distributions: the .la files generated by libtool are now installed by qpdf's make
install target. Before, they were not installed. This means that if your distribution does not want to include .la
files, you must remove them as part of your packaging process.

• Major enhancement: API enhancements have been made to support parsing of content streams. This
enhancement includes the following changes:

• QPDFObjectHandle::parseContentStream method parses objects in a content stream and calls handlers in a
callback class. The example examples/pdf-parse-content.cc illustrates how this may be used.

• QPDFObjectHandle can now represent operators and inline images, object types that may only appear
in content streams.

Release Notes

30

• Method QPDFObjectHandle::getTypeCode() returns an enumerated type value representing the underlying
object type. Method QPDFObjectHandle::getTypeName() returns a text string describing the name of
the type of a QPDFObjectHandle object. These methods can be used for more efficient parsing and
debugging/diagnostic messages.

• qpdf --check now parses all pages' content streams in addition to doing other checks. While there are still many
types of errors that cannot be detected, syntactic errors in content streams will now be reported.

• Minor compilation enhancements have been made to facilitate easier for support for a broader range of compilers
and compiler versions.

• Warning flags have been moved into a separate variable in autoconf.mk

• The configure flag --enable-werror work for Microsoft compilers

• All MSVC CRT security warnings have been resolved.

• All C-style casts in C++ Code have been replaced by C++ casts, and many casts that had been included
to suppress higher warning levels for some compilers have been removed, primarily for clarity. Places
where integer type coercion occurs have been scrutinized. A new casting policy has been documented in the
manual. This is of concern mainly to people porting qpdf to new platforms or compilers. It is not visible to
programmers writing code that uses the library

• Some internal limits have been removed in code that converts numbers to strings. This is largely invisible to
users, but it does trigger a bug in some older versions of mingw-w64's C++ library. See README-windows.txt
in the source distribution if you think this may affect you. The copy of the DLL distributed with qpdf's binary
distribution is not affected by this problem.

• The RPM spec file previously included with qpdf has been removed. This is because virtually all Linux
distributions include qpdf now that it is a dependency of CUPS filters.

• A few bug fixes are included:

• Overridden compressed objects are properly handled. Before, there were certain constructs that could cause
qpdf to see old versions of some objects. The most usual manifestation of this was loss of filled in form
values for certain files.

• Installation no longer uses GNU/Linux-specific versions of some commands, so make install works on
Solaris with native tools.

• The 64-bit mingw Windows binary package no longer includes a 32-bit DLL.

4.0.1: January 17, 2013

• Fix detection of binary attachments in test suite to avoid false test failures on some platforms.

• Add clarifying comment in QPDF.hh to methods that return the user password explaining that it is no longer
possible with newer encryption formats to recover the user password knowing the owner password. In earlier
encryption formats, the user password was encrypted in the file using the owner password. In newer encryption
formats, a separate encryption key is used on the file, and that key is independently encrypted using both the
user password and the owner password.

4.0.0: December 31, 2012

• Major enhancement: support has been added for newer encryption schemes supported by version X of Adobe
Acrobat. This includes use of 127-character passwords, 256-bit encryption keys, and the encryption scheme

Release Notes

31

specified in ISO 32000-2, the PDF 2.0 specification. This scheme can be chosen from the command line by
specifying use of 256-bit keys. qpdf also supports the deprecated encryption method used by Acrobat IX. This
encryption style has known security weaknesses and should not be used in practice. However, such files exist “in
the wild,” so support for this scheme is still useful. New methods QPDFWriter::setR6EncryptionParameters
(for the PDF 2.0 scheme) and QPDFWriter::setR5EncryptionParameters (for the deprecated scheme) have
been added to enable these new encryption schemes. Corresponding functions have been added to the C API
as well.

• Full support for Adobe extension levels in PDF version information. Starting with PDF version 1.7,
corresponding to ISO 32000, Adobe adds new functionality by increasing the extension level rather
than increasing the version. This support includes addition of the QPDF::getExtensionLevel method for
retrieving the document's extension level, addition of versions of QPDFWriter::setMinimumPDFVersion
and QPDFWriter::forcePDFVersion that accept an extension level, and extended syntax for specifying
forced and minimum versions on the command line as described in Section 3.5, “Advanced Transformation
Options”, page 8. Corresponding functions have been added to the C API as well.

• Minor fixes to prevent qpdf from referencing objects in the file that are not referenced in the file's overall
structure. Most files don't have any such objects, but some files have contain unreferenced objects with errors,
so these fixes prevent qpdf from needlessly rejecting or complaining about such objects.

• Add new generalized methods for reading and writing files from/to programmer-defined sources. The
method QPDF::processInputSource allows the programmer to use any input source for the input file, and
QPDFWriter::setOutputPipeline allows the programmer to write the output file through any pipeline. These
methods would make it possible to perform any number of specialized operations, such as accessing external
storage systems, creating bindings for qpdf in other programming languages that have their own I/O systems,
etc.

• Add new method QPDF::getEncryptionKey for retrieving the underlying encryption key used in the file.

• This release includes a small handful of non-compatible API changes. While effort is made to avoid such
changes, all the non-compatible API changes in this version were to parts of the API that would likely never
be used outside the library itself. In all cases, the altered methods or structures were parts of the QPDF that
were public to enable them to be called from either QPDFWriter or were part of validation code that was over-
zealous in reporting problems in parts of the file that would not ordinarily be referenced. In no case did any of
the removed methods do anything worse that falsely report error conditions in files that were broken in ways
that didn't matter. The following public parts of the QPDF class were changed in a non-compatible way:

• Updated nested QPDF::EncryptionData class to add fields needed by the newer encryption formats,
member variables changed to private so that future changes will not require breaking backward compatibility.

• Added additional parameters to compute_data_key, which is used by QPDFWriter to compute the
encryption key used to encrypt a specific object.

• Removed the method flattenScalarReferences. This method was previously used prior to writing a new PDF
file, but it has the undesired side effect of causing qpdf to read objects in the file that were not referenced.
Some otherwise files have unreferenced objects with errors in them, so this could cause qpdf to reject files
that would be accepted by virtually all other PDF readers. In fact, qpdf relied on only a very small part of
what flattenScalarReferences did, so only this part has been preserved, and it is now done directly inside
QPDFWriter.

• Removed the method decodeStreams. This method was used by the --check option of the qpdf command-line
tool to force all streams in the file to be decoded, but it also suffered from the problem of opening otherwise
unreferenced streams and thus could report false positive. The --check option now causes qpdf to go through
all the motions of writing a new file based on the original one, so it will always reference and check exactly
those parts of a file that any ordinary viewer would check.

Release Notes

32

• Removed the method trimTrailerForWrite. This method was used by QPDFWriter to modify the original
QPDF object by removing fields from the trailer dictionary that wouldn't apply to the newly written file.
This functionality, though generally harmless, was a poor implementation and has been replaced by having
QPDFWriter filter these out when copying the trailer rather than modifying the original QPDF object. (Note
that qpdf never modifies the original file itself.)

• Allow the PDF header to appear anywhere in the first 1024 bytes of the file. This is consistent with what other
readers do.

• Fix the pkg-config files to list zlib and pcre in Requires.private to better support static linking using pkg-config.

3.0.2: September 6, 2012

• Bug fix: QPDFWriter::setOutputMemory did not work when not used with QPDFWriter::setStaticID, which
made it pretty much useless. This has been fixed.

• New API call QPDFWriter::setExtraHeaderText inserts additional text near the header of the PDF file. The
intended use case is to insert comments that may be consumed by a downstream application, though other use
cases may exist.

3.0.1: August 11, 2012

• Version 3.0.0 included addition of files for pkg-config, but this was not mentioned in the release notes. The
release notes for 3.0.0 were updated to mention this.

• Bug fix: if an object stream ended with a scalar object not followed by space, qpdf would incorrectly report that
it encountered a premature EOF. This bug has been in qpdf since version 2.0.

3.0.0: August 2, 2012

• Acknowledgment: I would like to express gratitude for the contributions of Tobias Hoffmann toward the release
of qpdf version 3.0. He is responsible for most of the implementation and design of the new API for manipulating
pages, and contributed code and ideas for many of the improvements made in version 3.0. Without his work,
this release would certainly not have happened as soon as it did, if at all.

• Non-compatible API change: The version of QPDFObjectHandle::replaceStreamData that uses a
StreamDataProvider no longer requires (or accepts) a length parameter. See Appendix C, Upgrading to
3.0, page 39 for an explanation. While care is taken to avoid non-compatible API changes in general, an
exception was made this time because the new interface offers an opportunity to significantly simplify calling
code.

• Support has been added for large files. The test suite verifies support for files larger than 4 gigabytes, and
manual testing has verified support for files larger than 10 gigabytes. Large file support is available for both
32-bit and 64-bit platforms as long as the compiler and underlying platforms support it.

• Support for page selection (splitting and merging PDF files) has been added to the qpdf command-line tool.
See Section 3.4, “Page Selection Options”, page 6.

• Options have been added to the qpdf command-line tool for copying encryption parameters from another file.
See Section 3.2, “Basic Options”, page 4.

• New methods have been added to the QPDF object for adding and removing pages. See Section 6.6, “Adding
and Removing Pages”, page 19.

• New methods have been added to the QPDF object for copying objects from other PDF files. See Section 6.8,
“Copying Objects From Other PDF Files”, page 20

Release Notes

33

• A new method QPDFObjectHandle::parse has been added for constructing QPDFObjectHandle objects
from a string description.

• Methods have been added to QPDFWriter to allow writing to an already open stdio FILE* addition to writing
to standard output or a named file. Methods have been added to QPDF to be able to process a file from an
already open stdio FILE*. This makes it possible to read and write PDF from secure temporary files that have
been unlinked prior to being fully read or written.

• The QPDF::emptyPDF can be used to allow creation of PDF files from scratch. The example examples/pdf-
create.cc illustrates how it can be used.

• Several methods to take PointerHolder<Buffer> can now also accept std::string arguments.

• Many new convenience methods have been added to the library, most in QPDFObjectHandle. See
ChangeLog for a full list.

• When building on a platform that supports ELF shared libraries (such as Linux), symbol versions are enabled
by default. They can be disabled by passing --disable-ld-version-script to ./configure.

• The file libqpdf.pc is now installed to support pkg-config.

• Image comparison tests are off by default now since they are not needed to verify a correct build or port of
qpdf. They are needed only when changing the actual PDF output generated by qpdf. You should enable them
if you are making deep changes to qpdf itself. See README for details.

• Large file tests are off by default but can be turned on with ./configure or by setting an environment variable
before running the test suite. See README for details.

• When qpdf's test suite fails, failures are not printed to the terminal anymore by default. Instead, find them in
build/qtest.log. For packagers who are building with an autobuilder, you can add the --enable-show-failed-
test-output option to ./configure to restore the old behavior.

2.3.1: December 28, 2011

• Fix thread-safety problem resulting from non-thread-safe use of the PCRE library.

• Made a few minor documentation fixes.

• Add workaround for a bug that appears in some versions of ghostscript to the test suite

• Fix minor build issue for Visual C++ 2010.

2.3.0: August 11, 2011

• Bug fix: when preserving existing encryption on encrypted files with cleartext metadata, older qpdf versions
would generate password-protected files with no valid password. This operation now works. This bug only
affected files created by copying existing encryption parameters; explicit encryption with specification of
cleartext metadata worked before and continues to work.

• Enhance QPDFWriter with a new constructor that allows you to delay the specification of the output file.
When using this constructor, you may now call QPDFWriter::setOutputFilename to specify the output file,
or you may use QPDFWriter::setOutputMemory to cause QPDFWriter to write the resulting PDF file to a
memory buffer. You may then use QPDFWriter::getBuffer to retrieve the memory buffer.

• Add new API call QPDF::replaceObject for replacing objects by object ID

• Add new API call QPDF::swapObjects for swapping two objects by object ID

Release Notes

34

• Add QPDFObjectHandle::getDictAsMap and QPDFObjectHandle::getArrayAsVector to allow retrieval of
dictionary objects as maps and array objects as vectors.

• Add functions qpdf_get_info_key and qpdf_set_info_key to the C API for manipulating string fields of the
document's /Info dictionary.

• Add functions qpdf_init_write_memory, qpdf_get_buffer_length, and qpdf_get_buffer to the C API for writing
PDF files to a memory buffer instead of a file.

2.2.4: June 25, 2011

• Fix installation and compilation issues; no functionality changes.

2.2.3: April 30, 2011

• Handle some damaged streams with incorrect characters following the stream keyword.

• Improve handling of inline images when normalizing content streams.

• Enhance error recovery to properly handle files that use object 0 as a regular object, which is specifically
disallowed by the spec.

2.2.2: October 4, 2010

• Add new function qpdf_read_memory to the C API to call QPDF::processMemoryFile. This was an omission
in qpdf 2.2.1.

2.2.1: October 1, 2010

• Add new method QPDF::setOutputStreams to replace std::cout and std::cerr with other streams for generation
of diagnostic messages and error messages. This can be useful for GUIs or other applications that want to
capture any output generated by the library to present to the user in some other way. Note that QPDF does
not write to std::cout (or the specified output stream) except where explicitly mentioned in QPDF.hh, and
that the only use of the error stream is for warnings. Note also that output of warnings is suppressed when
setSuppressWarnings(true) is called.

• Add new method QPDF::processMemoryFile for operating on PDF files that are loaded into memory rather
than in a file on disk.

• Give a warning but otherwise ignore empty PDF objects by treating them as null. Empty object are not permitted
by the PDF specification but have been known to appear in some actual PDF files.

• Handle inline image filter abbreviations when the appear as stream filter abbreviations. The PDF specification
does not allow use of stream filter abbreviations in this way, but Adobe Reader and some other PDF readers
accept them since they sometimes appear incorrectly in actual PDF files.

• Implement miscellaneous enhancements to PointerHolder and Buffer to support other changes.

2.2.0: August 14, 2010

• Add new methods to QPDFObjectHandle (newStream and replaceStreamData for creating new streams and
replacing stream data. This makes it possible to perform a wide range of operations that were not previously
possible.

• Add new helper method in QPDFObjectHandle (addPageContents) for appending or prepending new content
streams to a page. This method makes it possible to manipulate content streams without having to be concerned
whether a page's contents are a single stream or an array of streams.

Release Notes

35

• Add new method in QPDFObjectHandle: replaceOrRemoveKey, which replaces a dictionary key with a
given value unless the value is null, in which case it removes the key instead.

• Add new method in QPDFObjectHandle: getRawStreamData, which returns the raw (unfiltered) stream data
into a buffer. This complements the getStreamData method, which returns the filtered (uncompressed) stream
data and can only be used when the stream's data is filterable.

• Provide two new examples: pdf-double-page-size and pdf-invert-images that illustrate the newly added
interfaces.

• Fix a memory leak that would cause loss of a few bytes for every object involved in a cycle of object references.
Thanks to Jian Ma for calling my attention to the leak.

2.1.5: April 25, 2010

• Remove restriction of file identifier strings to 16 bytes. This unnecessary restriction was preventing qpdf from
being able to encrypt or decrypt files with identifier strings that were not exactly 16 bytes long. The specification
imposes no such restriction.

2.1.4: April 18, 2010

• Apply the same padding calculation fix from version 2.1.2 to the main cross reference stream as well.

• Since qpdf --check only performs limited checks, clarify the output to make it clear that there still may be
errors that qpdf can't check. This should make it less surprising to people when another PDF reader is unable
to read a file that qpdf thinks is okay.

2.1.3: March 27, 2010

• Fix bug that could cause a failure when rewriting PDF files that contain object streams with unreferenced objects
that in turn reference indirect scalars.

• Don't complain about (invalid) AES streams that aren't a multiple of 16 bytes. Instead, pad them before
decrypting.

2.1.2: January 24, 2010

• Fix bug in padding around first half cross reference stream in linearized files. The bug could cause an assertion
failure when linearizing certain unlucky files.

2.1.1: December 14, 2009

• No changes in functionality; insert missing include in an internal library header file to support gcc 4.4, and
update test suite to ignore broken Adobe Reader installations.

2.1: October 30, 2009

• This is the first version of qpdf to include Windows support. On Windows, it is possible to build a DLL.
Additionally, a partial C-language API has been introduced, which makes it possible to call qpdf functions
from non-C++ environments. I am very grateful to Zarko Gagic (http://delphi.about.com/) for tirelessly testing
numerous pre-release versions of this DLL and providing many excellent suggestions on improving the
interface.

For programming to the C interface, please see the header file qpdf/qpdf-c.h and the example examples/pdf-
linearize.c.

• Zarko Gajic has written a Delphi wrapper for qpdf, which can be downloaded from qpdf's download side.
Zarko's Delphi wrapper is released with the same licensing terms as qpdf itself and comes with this disclaimer:

http://delphi.about.com/

Release Notes

36

“Delphi wrapper unit qpdf.pas created by Zarko Gajic (http://delphi.about.com/). Use at your own risk and for
whatever purpose you want. No support is provided. Sample code is provided.”

• Support has been added for AES encryption and crypt filters. Although qpdf does not presently support files
that use PKI-based encryption, with the addition of AES and crypt filters, qpdf is now be able to open most
encrypted files created with newer versions of Acrobat or other PDF creation software. Note that I have not
been able to get very many files encrypted in this way, so it's possible there could still be some cases that qpdf
can't handle. Please report them if you find them.

• Many error messages have been improved to include more information in hopes of making qpdf a more useful
tool for PDF experts to use in manually recovering damaged PDF files.

• Attempt to avoid compressing metadata streams if possible. This is consistent with other PDF creation
applications.

• Provide new command-line options for AES encrypt, cleartext metadata, and setting the minimum and forced
PDF versions of output files.

• Add additional methods to the QPDF object for querying the document's permissions. Although qpdf does
not enforce these permissions, it does make them available so that applications that use qpdf can enforce
permissions.

• The --check option to qpdf has been extended to include some additional information.

• There have been a handful of non-compatible API changes. For details, see Appendix B, Upgrading from 2.0
to 2.1, page 38.

2.0.6: May 3, 2009

• Do not attempt to uncompress streams that have decode parameters we don't recognize. Earlier versions of qpdf
would have rejected files with such streams.

2.0.5: March 10, 2009

• Improve error handling in the LZW decoder, and fix a small error introduced in the previous version with regard
to handling full tables. The LZW decoder has been more strongly verified in this release.

2.0.4: February 21, 2009

• Include proper support for LZW streams encoded without the “early code change” flag. Special thanks to Atom
Smasher who reported the problem and provided an input file compressed in this way, which I did not previously
have.

• Implement some improvements to file recovery logic.

2.0.3: February 15, 2009

• Compile cleanly with gcc 4.4.

• Handle strings encoded as UTF-16BE properly.

2.0.2: June 30, 2008

• Update test suite to work properly with a non-bash /bin/sh and with Perl 5.10. No changes were made to the
actual qpdf source code itself for this release.

http://delphi.about.com/

Release Notes

37

2.0.1: May 6, 2008

• No changes in functionality or interface. This release includes fixes to the source code so that qpdf compiles
properly and passes its test suite on a broader range of platforms. See ChangeLog in the source distribution
for details.

2.0: April 29, 2008

• First public release.

38

Appendix B. Upgrading from 2.0 to 2.1
Although, as a general rule, we like to avoid introducing source-level incompatibilities in qpdf's interface, there were a
few non-compatible changes made in this version. A considerable amount of source code that uses qpdf will probably
compile without any changes, but in some cases, you may have to update your code. The changes are enumerated here.
There are also some new interfaces; for those, please refer to the header files.

• QPDF's exception handling mechanism now uses std::logic_error for internal errors and std::runtime_error
for runtime errors in favor of the now removed QEXC classes used in previous versions. The QEXC exception
classes predated the addition of the <stdexcept> header file to the C++ standard library. Most of the exceptions
thrown by the qpdf library itself are still of type QPDFExc which is now derived from std::runtime_error.
Programs that caught an instance of std::exception and displayed it by calling the what() method will not need
to be changed.

• The QPDFExc class now internally represents various fields of the error condition and provides interfaces for
querying them. Among the fields is a numeric error code that can help applications act differently on (a small number
of) different error conditions. See QPDFExc.hh for details.

• Warnings can be retrieved from qpdf as instances of QPDFExc instead of strings.

• The nested QPDF::EncryptionData class's constructor takes an additional argument. This class is primarily
intended to be used by QPDFWriter. There's not really anything useful an end-user application could do with it. It
probably shouldn't really be part of the public interface to begin with. Likewise, some of the methods for computing
internal encryption dictionary parameters have changed to support /R=4 encryption.

• The method QPDF::getUserPassword has been removed since it didn't do what people would think it did. There
are now two new methods: QPDF::getPaddedUserPassword and QPDF::getTrimmedUserPassword. The first one
does what the old QPDF::getUserPassword method used to do, which is to return the password with possible binary
padding as specified by the PDF specification. The second one returns a human-readable password string.

• The enumerated types that used to be nested in QPDFWriter have moved to top-level enumerated types and are
now defined in the file qpdf/Constants.h. This enables them to be shared by both the C and C++ interfaces.

39

Appendix C. Upgrading to 3.0
For the most part, the API for qpdf version 3.0 is backward compatible with versions 2.1 and later. There are two
exceptions:

• The method QPDFObjectHandle::replaceStreamData that uses a StreamDataProvider to provide the stream
data no longer takes a length parameter. While it would have been easy enough to keep the parameter for backward
compatibility, in this case, the parameter was removed since this provides the user an opportunity to simplify the
calling code. This method was introduced in version 2.2. At the time, the length parameter was required in order
to ensure that calls to the stream data provider returned the same length for a specific stream every time they were
invoked. In particular, the linearization code depends on this. Instead, qpdf 3.0 and newer check for that constraint
explicitly. The first time the stream data provider is called for a specific stream, the actual length is saved, and
subsequent calls are required to return the same number of bytes. This means the calling code no longer has to
compute the length in advance, which can be a significant simplification. If your code fails to compile because of
the extra argument and you don't want to make other changes to your code, just omit the argument.

• Many methods take long long instead of other integer types. Most if not all existing code should compile fine
with this change since such parameters had always previously been smaller types. This change was required to
support files larger than two gigabytes in size.

40

Appendix D. Upgrading to 4.0
While version 4.0 includes a few non-compatible API changes, it is very unlikely that anyone's code would have
used any of those parts of the API since they generally required information that would only be available inside the
library. In the unlikely event that you should run into trouble, please see the ChangeLog. See also Appendix A, Release
Notes, page 28 for a complete list of the non-compatible API changes made in this version.

@unixroot/usr/share/doc/qpdf/stylesheet.css
/**/
/* Custom style-sheet for the QPDF manual in HTML form. */
/**/

/*
 * This file is the CSS for the QPDF manual. It is based heavily on
 * the CSS for the Subversion book. That file contains the following
 * copyright and attribution:
 *
 * Copyright (c) 2003-2007
 * Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato.
 *
 * This work is licensed under the Creative Commons Attribution License.
 * To view a copy of this license, visit
 * http://creativecommons.org/licenses/by/2.0/ or send a letter to
 * Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
 * USA.
 */

body
{
 background: white;
 margin: 0.5in;
}

p, li, ul, ol, dd, dt
{
 font-style: normal;
 font-weight: normal;
 color: black;
}

tt, pre
{
 font-family: courier new,courier,fixed;
}

a
{
 color: blue;
 text-decoration: underline;
}

a:hover
{
 background: rgb(75%,75%,100%);
 color: blue;
 text-decoration: underline;
}

a:visited
{
 color: purple;
 text-decoration: underline;
}

img
{
 border: none;
}

h1.title
{
 font-size: 250%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

h2.subtitle
{
 font-size: 150%;
 font-style: italic;
 color: black;
}

h2.title
{
 font-size: 150%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

h3.title
{
 font-size: 125%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

h4.title
{
 font-size: 100%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

.toc b
{
 font-size: 125%;
 font-style: normal;
 font-weight: bold;
 color: black;
}

.screen, .programlisting, .literal
{
 font-family: courier new,courier,fixed;
 font-style: normal;
 font-weight: normal;
}

.command, .option, .type
{
 font-family: courier new,courier,fixed;
 font-style: normal;
 font-weight: normal;
}

.filename
{
 font-family: arial,helvetica,sans-serif;
 font-style: italic;
}

.property
{
 font-family: arial,helvetica,sans-serif;
 font-weight: bold;
}

.classname
{
 font-family: arial,helvetica,sans-serif;
 font-weight: bold;
 font-style: italic;
}

.varname, .function, .envar
{
 font-family: arial,helvetica,sans-serif;
 font-style: italic;
}

.replaceable
{
 font-style: italic;
 font-size: 100%;
}

.figure, .example, .table
{
 margin: 0.125in 0.25in;
}

.table table
{
 border-width: 1px;
 border-style: solid;
 border-color: black;
 border-spacing: 0;
 background: rgb(240,240,240);
}

.table td
{
 border: none;
 border-right: 1px black solid;
 border-bottom: 1px black solid;
 padding: 2px;
}

.table th
{
 background: rgb(180,180,180);
 border: none;
 border-right: 1px black solid;
 border-bottom: 1px black solid;
 padding: 2px;
}

.table p.title, .figure p.title, .example p.title
{
 text-align: left !important;
 font-size: 100% !important;
}

.author, .pubdate
{
 margin: 0;
 font-size: 100%;
 font-style: italic;
 font-weight: normal;
 color: black;
}

.preface div.author, .preface .pubdate
{
 font-size: 80%;
}

.sidebar
{
 border-top: dotted 1px black;
 border-left: dotted 1px black;
 border-right: solid 2px black;
 border-bottom: solid 2px black;
 background: rgb(240,220,170);
 padding: 0 0.12in;
 margin: 0.25in;
}

.note .programlisting, .note .screen,
.tip .programlisting, .tip .screen,
.warning .programlisting, .warning .screen,
.sidebar .programlisting, .sidebar .screen
{
 border: none;
 background: none;
}

.sidebar p.title
{
 text-align: center;
 font-size: 125%;
}

.note
{
 border: black solid 1px;
 background: url(./images/note.png) no-repeat rgb(252,246,220);
 margin: 0.125in 0;
 padding: 0 55px;
}

.tip
{
 border: black solid 1px;
 background: url(./images/tip.png) no-repeat rgb(224,244,255);
 margin: 0.125in 0;
 padding: 0 55px;
}

.warning
{
 border: black solid 1px;
 background: url(./images/warning.png) no-repeat rgb(255,210,210);
 margin: 0.125in 0;
 padding: 0 55px;
}

/*
.note .title, .tip .title, .warning .title
{
 display: none;
}
*/

.programlisting, .screen
{
 font-size: 90%;
 color: black;
 margin: 1em 0.25in;
 padding: 0.5em;
 background: rgb(240,240,240);
 border-top: black dotted 1px;
 border-left: black dotted 1px;
 border-right: black solid 2px;
 border-bottom: black solid 2px;
}

.navheader, .navfooter
{
 border: black solid 1px;
 background: rgb(180,180,200);
}

.navheader hr, .navfooter hr
{
 display: none;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-bookmarks.cc
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/QTC.hh>

static char const* whoami = 0;
static enum { st_none, st_numbers, st_lines } style = st_none;
static bool show_open = false;
static bool show_targets = false;
static std::map<QPDFObjGen, int> page_map;

void usage()
{
 std::cerr << "Usage: " << whoami << " [options] file.pdf [password]"
	 << std::endl
	 << "Options:" << std::endl
	 << " -numbers give bookmarks outline-style numbers"
	 << std::endl
	 << " -lines draw lines to show bookmark hierarchy"
	 << std::endl
	 << " -show-open indicate whether a bookmark is initially open"
	 << std::endl
	 << " -show-targets show target if possible"
	 << std::endl;
 exit(2);
}

void print_lines(std::vector<int>& numbers)
{
 for (unsigned int i = 0; i < numbers.size() - 1; ++i)
 {
	if (numbers.at(i))
	{
	 std::cout << "| ";
	}
	else
	{
	 std::cout << " ";
	}
 }
}

void generate_page_map(QPDF& qpdf)
{
 std::vector<QPDFObjectHandle> pages = qpdf.getAllPages();
 int n = 0;
 for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
 {
	QPDFObjectHandle& oh = *iter;
	page_map[oh.getObjGen()] = ++n;
 }
}

void extract_bookmarks(QPDFObjectHandle outlines, std::vector<int>& numbers)
{
 if (outlines.hasKey("/Title"))
 {
	// No default so gcc will warn on missing tag
	switch (style)
	{
	 case st_none:
	 QTC::TC("examples", "pdf-bookmarks none");
	 break;

	 case st_numbers:
	 QTC::TC("examples", "pdf-bookmarks numbers");
	 for (std::vector<int>::iterator iter = numbers.begin();
		 iter != numbers.end(); ++iter)
	 {
		std::cout << *iter << ".";
	 }
	 std::cout << " ";
	 break;

	 case st_lines:
	 QTC::TC("examples", "pdf-bookmarks lines");
	 print_lines(numbers);
	 std::cout << "|" << std::endl;
	 print_lines(numbers);
	 std::cout << "+-+ ";
	 break;
	}

	if (show_open)
	{
	 if (outlines.hasKey("/Count"))
	 {
		QTC::TC("examples", "pdf-bookmarks has count");
		int count = outlines.getKey("/Count").getIntValue();
		if (count > 0)
		{
		 // hierarchy is open at this point
		 QTC::TC("examples", "pdf-bookmarks open");
		 std::cout << "(v) ";
		}
		else
		{
		 QTC::TC("examples", "pdf-bookmarks closed");
		 std::cout << "(>) ";
		}
	 }
	 else
	 {
		QTC::TC("examples", "pdf-bookmarks no count");
		std::cout << "() ";
	 }
	}

	if (show_targets)
	{
	 QTC::TC("examples", "pdf-bookmarks targets");
	 std::string target = "unknown";
	 // Only explicit destinations supported for now
	 if (outlines.hasKey("/Dest"))
	 {
		QTC::TC("examples", "pdf-bookmarks dest");
		QPDFObjectHandle dest = outlines.getKey("/Dest");
		if ((dest.isArray()) && (dest.getArrayNItems() > 0))
		{
		 QPDFObjectHandle first = dest.getArrayItem(0);
		 QPDFObjGen og = first.getObjGen();
		 if (page_map.count(og))
		 {
			target = QUtil::int_to_string(page_map[og]);
		 }
		}

		std::cout << "[-> " << target << "] ";
	 }
	}

	std::cout << outlines.getKey("/Title").getUTF8Value() << std::endl;
 }

 if (outlines.hasKey("/First"))
 {
	numbers.push_back(0);
	QPDFObjectHandle child = outlines.getKey("/First");
	while (1)
	{
	 ++(numbers.back());
	 bool has_next = child.hasKey("/Next");
	 if ((style == st_lines) && (! has_next))
	 {
		numbers.back() = 0;
	 }
	 extract_bookmarks(child, numbers);
	 if (has_next)
	 {
		child = child.getKey("/Next");
	 }
	 else
	 {
		break;
	 }
	}
	numbers.pop_back();
 }
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if ((argc == 2) && (strcmp(argv[1], "--version") == 0))
 {
	std::cout << whoami << " version 1.5" << std::endl;
	exit(0);
 }

 int arg;
 for (arg = 1; arg < argc; ++arg)
 {
	if (argv[arg][0] == '-')
	{
	 if (strcmp(argv[arg], "-numbers") == 0)
	 {
		style = st_numbers;
	 }
	 else if (strcmp(argv[arg], "-lines") == 0)
	 {
		style = st_lines;
	 }
	 else if (strcmp(argv[arg], "-show-open") == 0)
	 {
		show_open = true;
	 }
	 else if (strcmp(argv[arg], "-show-targets") == 0)
	 {
		show_targets = true;
	 }
	 else
	 {
		usage();
	 }
	}
	else
	{
	 break;
	}
 }

 if (arg >= argc)
 {
	usage();
 }

 char const* filename = argv[arg++];
 char const* password = "";

 if (arg < argc)
 {
	password = argv[arg++];
 }
 if (arg != argc)
 {
	usage();
 }

 try
 {
	QPDF qpdf;
	qpdf.processFile(filename, password);

	QPDFObjectHandle root = qpdf.getRoot();
	if (root.hasKey("/Outlines"))
	{
	 std::vector<int> numbers;
	 if (show_targets)
	 {
		generate_page_map(qpdf);
	 }
	 extract_bookmarks(root.getKey("/Outlines"), numbers);
	}
	else
	{
	 std::cout << filename << " has no bookmarks" << std::endl;
	}
 }
 catch (std::exception &e)
 {
	std::cerr << whoami << " processing file " << filename << ": "
		 << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-create.cc
#include <qpdf/QPDF.hh>
#include <qpdf/QPDFWriter.hh>
#include <qpdf/QPDFObjectHandle.hh>
#include <qpdf/QUtil.hh>
#include <iostream>
#include <string.h>
#include <stdlib.h>

static char const* whoami = 0;

// This is a simple StreamDataProvider that writes image data for an
// orange square of the given width and height.
class ImageProvider: public QPDFObjectHandle::StreamDataProvider
{
 public:
 ImageProvider(int width, int height);
 virtual ~ImageProvider();
 virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline);

 private:
 int width;
 int height;
};

ImageProvider::ImageProvider(int width, int height) :
 width(width),
 height(height)
{
}

ImageProvider::~ImageProvider()
{
}

void
ImageProvider::provideStreamData(int objid, int generation,
 Pipeline* pipeline)
{
 for (int i = 0; i < width * height; ++i)
 {
 pipeline->write(QUtil::unsigned_char_pointer("\xff\x7f\x00"), 3);
 }
 pipeline->finish();
}

void usage()
{
 std::cerr << "Usage: " << whoami << " filename" << std::endl
	 << "Creates a simple PDF and writes it to filename" << std::endl;
 exit(2);
}

static QPDFObjectHandle createPageContents(QPDF& pdf, std::string const& text)
{
 // Create a stream that displays our image and the given text in
 // our font.
 std::string contents =
 "BT /F1 24 Tf 72 720 Td (" + text + ") Tj ET\n"
 "q 144 0 0 144 234 324 cm /Im1 Do Q\n";
 return QPDFObjectHandle::newStream(&pdf, contents);
}

QPDFObjectHandle newName(std::string const& name)
{
 return QPDFObjectHandle::newName(name);
}

QPDFObjectHandle newInteger(int val)
{
 return QPDFObjectHandle::newInteger(val);
}

static void create_pdf(char const* filename)
{
 QPDF pdf;

 // Start with an empty PDF that has no pages or non-required objects.
 pdf.emptyPDF();

 // Add an indirect object to contain a font descriptor for the
 // built-in Helvetica font.
 QPDFObjectHandle font = pdf.makeIndirectObject(
 QPDFObjectHandle::parse(
 "<<"
 " /Type /Font"
 " /Subtype /Type1"
 " /Name /F1"
 " /BaseFont /Helvetica"
 " /Encoding /WinAnsiEncoding"
 ">>"));

 // Create a stream to encode our image. We don't have to set the
 // length or filters. QPDFWriter will fill in the length and
 // compress the stream data using FlateDecode by default.
 QPDFObjectHandle image = QPDFObjectHandle::newStream(&pdf);
 image.replaceDict(QPDFObjectHandle::parse(
 "<<"
 " /Type /XObject"
 " /Subtype /Image"
 " /ColorSpace /DeviceRGB"
 " /BitsPerComponent 8"
 " /Width 100"
 " /Height 100"
 ">>"));
 // Provide the stream data.
 ImageProvider* p = new ImageProvider(100, 100);
 PointerHolder<QPDFObjectHandle::StreamDataProvider> provider(p);
 image.replaceStreamData(provider,
 QPDFObjectHandle::newNull(),
 QPDFObjectHandle::newNull());

 // Create direct objects as needed by the page dictionary.
 QPDFObjectHandle procset = QPDFObjectHandle::parse(
 "[/PDF /Text /ImageC]");

 QPDFObjectHandle rfont = QPDFObjectHandle::newDictionary();
 rfont.replaceKey("/F1", font);

 QPDFObjectHandle xobject = QPDFObjectHandle::newDictionary();
 xobject.replaceKey("/Im1", image);

 QPDFObjectHandle resources = QPDFObjectHandle::newDictionary();
 resources.replaceKey("/ProcSet", procset);
 resources.replaceKey("/Font", rfont);
 resources.replaceKey("/XObject", xobject);

 QPDFObjectHandle mediabox = QPDFObjectHandle::newArray();
 mediabox.appendItem(newInteger(0));
 mediabox.appendItem(newInteger(0));
 mediabox.appendItem(newInteger(612));
 mediabox.appendItem(newInteger(792));

 // Create the page content stream
 QPDFObjectHandle contents = createPageContents(
 pdf, "Look at the pretty, orange square!");

 // Create the page dictionary
 QPDFObjectHandle page = pdf.makeIndirectObject(
 QPDFObjectHandle::newDictionary());
 page.replaceKey("/Type", newName("/Page"));
 page.replaceKey("/MediaBox", mediabox);
 page.replaceKey("/Contents", contents);
 page.replaceKey("/Resources", resources);

 // Add the page to the PDF file
 pdf.addPage(page, true);

 // Write the results. A real application would not call
 // setStaticID here, but this example does it for the sake of its
 // test suite.
 QPDFWriter w(pdf, filename);
 w.setStaticID(true); // for testing only
 w.write();
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }
 if (argc != 2)
 {
	usage();
 }
 char const* filename = argv[1];

 try
 {
	create_pdf(filename);
 }
 catch (std::exception& e)
 {
	std::cerr << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-double-page-size.cc
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/QPDFWriter.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " infile.pdf outfile.pdf [in-password]"
	 << std::endl
	 << "Double size of all pages in infile.pdf;"
	 << " write output to outfile.pdf" << std::endl;
 exit(2);
}

static void doubleBoxSize(QPDFObjectHandle& page, char const* box_name)
{
 // If there is a box of this name, replace it with a new box whose
 // elements are double the values of the original box.
 QPDFObjectHandle box = page.getKey(box_name);
 if (box.isNull())
 {
	return;
 }
 if (! (box.isArray() && (box.getArrayNItems() == 4)))
 {
	throw std::runtime_error(std::string("box ") + box_name +
				 " is not an array of four elements");
 }
 std::vector<QPDFObjectHandle> doubled;
 for (unsigned int i = 0; i < 4; ++i)
 {
	doubled.push_back(
	 QPDFObjectHandle::newReal(
 box.getArrayItem(i).getNumericValue() * 2.0, 2));
 }
 page.replaceKey(box_name, QPDFObjectHandle::newArray(doubled));
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 // For test suite
 bool static_id = false;
 if ((argc > 1) && (strcmp(argv[1], " --static-id") == 0))
 {
 static_id = true;
 --argc;
 ++argv;
 }

 if (! ((argc == 3) || (argc == 4)))
 {
	usage();
 }

 char const* infilename = argv[1];
 char const* outfilename = argv[2];
 char const* password = (argc == 4) ? argv[3] : "";

 // Text to prepend to each page's contents
 std::string content = "2 0 0 2 0 0 cm\n";

 try
 {
	QPDF qpdf;
	qpdf.processFile(infilename, password);

	std::vector<QPDFObjectHandle> pages = qpdf.getAllPages();
	for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
	{
	 QPDFObjectHandle& page = *iter;

	 // Prepend the buffer to the page's contents
	 page.addPageContents(
 QPDFObjectHandle::newStream(&qpdf, content), true);

	 // Double the size of each of the content boxes
	 doubleBoxSize(page, "/MediaBox");
	 doubleBoxSize(page, "/CropBox");
	 doubleBoxSize(page, "/BleedBox");
	 doubleBoxSize(page, "/TrimBox");
	 doubleBoxSize(page, "/ArtBox");
	}

	// Write out a new file
	QPDFWriter w(qpdf, outfilename);
	if (static_id)
	{
	 // For the test suite, uncompress streams and use static
	 // IDs.
	 w.setStaticID(true); // for testing only
	 w.setStreamDataMode(qpdf_s_uncompress);
	}
	w.write();
	std::cout << whoami << ": new file written to " << outfilename
		 << std::endl;
 }
 catch (std::exception &e)
 {
	std::cerr << whoami << " processing file " << infilename << ": "
		 << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-invert-images.cc
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Buffer.hh>
#include <qpdf/QPDFWriter.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " infile.pdf outfile.pdf [in-password]"
	 << std::endl
	 << "Invert some images in infile.pdf;"
	 << " write output to outfile.pdf" << std::endl;
 exit(2);
}

// Derive a class from StreamDataProvider to provide updated stream
// data. The main purpose of using this object is to avoid having to
// allocate memory up front for the objects. A real application might
// use temporary files in order to avoid having to allocate all the
// memory. Here, we're not going to worry about that since the goal
// is really to show how to use this facility rather than to show the
// best possible way to write an image inverter. This class still
// illustrates dynamic creation of the new stream data.
class ImageInverter: public QPDFObjectHandle::StreamDataProvider
{
 public:
 virtual ~ImageInverter()
 {
 }
 virtual void provideStreamData(int objid, int generation,
				 Pipeline* pipeline);

 // Map [og] = image object
 std::map<QPDFObjGen, QPDFObjectHandle> image_objects;
 // Map [og] = image data
 std::map<QPDFObjGen, PointerHolder<Buffer> > image_data;
};

void
ImageInverter::provideStreamData(int objid, int generation,
				 Pipeline* pipeline)
{
 // Use the object and generation number supplied to look up the
 // image data. Then invert the image data and write the inverted
 // data to the pipeline.
 PointerHolder<Buffer> data =
 this->image_data[QPDFObjGen(objid, generation)];
 size_t size = data->getSize();
 unsigned char* buf = data->getBuffer();
 unsigned char ch;
 for (size_t i = 0; i < size; ++i)
 {
	ch = static_cast<unsigned char>(0xff) - buf[i];
	pipeline->write(&ch, 1);
 }
 pipeline->finish();
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 // For test suite
 bool static_id = false;
 if ((argc > 1) && (strcmp(argv[1], " --static-id") == 0))
 {
 static_id = true;
 --argc;
 ++argv;
 }

 if (! ((argc == 3) || (argc == 4)))
 {
	usage();
 }

 char const* infilename = argv[1];
 char const* outfilename = argv[2];
 char const* password = (argc == 4) ? argv[3] : "";

 try
 {
	QPDF qpdf;
	qpdf.processFile(infilename, password);

	ImageInverter* inv = new ImageInverter;
	PointerHolder<QPDFObjectHandle::StreamDataProvider> p = inv;

	// For each page...
	std::vector<QPDFObjectHandle> pages = qpdf.getAllPages();
	for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
	 iter != pages.end(); ++iter)
	{
	 QPDFObjectHandle& page = *iter;
	 // Get all images on the page.
	 std::map<std::string, QPDFObjectHandle> images =
		page.getPageImages();
	 for (std::map<std::string, QPDFObjectHandle>::iterator iter =
		 images.begin();
		 iter != images.end(); ++iter)
	 {
		QPDFObjectHandle& image = (*iter).second;
		QPDFObjectHandle image_dict = image.getDict();
		QPDFObjectHandle color_space =
		 image_dict.getKey("/ColorSpace");
		QPDFObjectHandle bits_per_component =
		 image_dict.getKey("/BitsPerComponent");

		// For our example, we can only work with images 8-bit
		// grayscale images that we can fully decode. Use
		// pipeStreamData with a null pipeline to determine
		// whether the image is filterable. Directly inspect
		// keys to determine the image type.
		if (image.pipeStreamData(0, true, false, false) &&
		 color_space.isName() &&
		 bits_per_component.isInteger() &&
		 (color_space.getName() == "/DeviceGray") &&
		 (bits_per_component.getIntValue() == 8))
		{
		 // Store information about the images based on the
		 // object and generation number. Recall that a single
		 // image object may be used more than once.
		 QPDFObjGen og = image.getObjGen();
		 if (inv->image_objects.count(og) == 0)
		 {
			inv->image_objects[og] = image;
			inv->image_data[og] = image.getStreamData();

			// Register our stream data provider for this
			// stream. Future calls to getStreamData or
			// pipeStreamData will use the new
			// information. Provide null for both filter
			// and decode parameters. Note that this does
			// not mean the image data will be
			// uncompressed when we write the file. By
			// default, QPDFWriter will use /FlateDecode
			// for anything that is uncompressed or
			// filterable in the input QPDF object, so we
			// don't have to deal with it explicitly here.
			image.replaceStreamData(
			 p,
			 QPDFObjectHandle::newNull(),
			 QPDFObjectHandle::newNull());
		 }
		}
	 }
	}

	// Write out a new file
	QPDFWriter w(qpdf, outfilename);
	if (static_id)
	{
	 // For the test suite, uncompress streams and use static
	 // IDs.
	 w.setStaticID(true); // for testing only
	}
	w.write();
	std::cout << whoami << ": new file written to " << outfilename
		 << std::endl;
 }
 catch (std::exception &e)
 {
	std::cerr << whoami << " processing file " << infilename << ": "
		 << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-linearize.c
/*
 * This is an example program to linearize a PDF file using the C API.
 */

#include <qpdf/qpdf-c.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static char const* whoami = 0;

static void usage()
{
 fprintf(stderr, "Usage: %s infile infile-password outfile\n", whoami);
 exit(2);
}

int main(int argc, char* argv[])
{
 char* infile = NULL;
 char* password = NULL;
 char* outfile = NULL;
 qpdf_data qpdf = qpdf_init();
 int warnings = 0;
 int errors = 0;
 char* p = 0;

 if ((p = strrchr(argv[0], '/')) != NULL)
 {
	whoami = p + 1;
 }
 else if ((p = strrchr(argv[0], '\\')) != NULL)
 {
	whoami = p + 1;
 }
 else
 {
	whoami = argv[0];
 }

 if (argc != 4)
 {
	usage();
 }

 infile = argv[1];
 password = argv[2];
 outfile = argv[3];

 if (((qpdf_read(qpdf, infile, password) & QPDF_ERRORS) == 0) &&
	((qpdf_init_write(qpdf, outfile) & QPDF_ERRORS) == 0))
 {
 /* Use static ID for testing only. For production, a
 * non-static ID is used. See also
 * qpdf_set_deterministic_ID. */
	qpdf_set_static_ID(qpdf, QPDF_TRUE); /* for testing only */
	qpdf_set_linearization(qpdf, QPDF_TRUE);
	qpdf_write(qpdf);
 }
 while (qpdf_more_warnings(qpdf))
 {
	warnings = 1;
	printf("warning: %s\n",
	 qpdf_get_error_full_text(qpdf, qpdf_next_warning(qpdf)));
 }
 if (qpdf_has_error(qpdf))
 {
	errors = 1;
	printf("error: %s\n",
	 qpdf_get_error_full_text(qpdf, qpdf_get_error(qpdf)));
 }
 qpdf_cleanup(&qpdf);
 if (errors)
 {
	return 2;
 }
 else if (warnings)
 {
	return 3;
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-mod-info.cc

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-mod-info.cc
// Author: Vitaliy Pavlyuk

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFWriter.hh>

#include <qpdf/QPDFObjectHandle.hh>

#include <qpdf/QUtil.hh>

#include <qpdf/QTC.hh>

#include <iostream>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#ifdef _WIN32

#include <Windows.h>

#include <direct.h>

#include <io.h>

#else

#include <unistd.h>

#endif

static char const* version = "1.1";

static char const* whoami = 0;

void usage()

{

 std::cerr

 << "Usage: " << whoami

 << " -in in_file [-out out_file] [-key key [-val val]?]+\n"

 << "Modifies/Adds/Removes PDF /Info entries in the in_file\n"

 << "and stores the result in out_file\n"

 << "Special mode: " << whoami << " --dump file\n"

 << "dumps all /Info entries to stdout\n";

 exit(2);

}

void dumpInfoDict(QPDF& pdf,

 std::ostream& os = std::cout,

 std::string const& sep = ":\t")

{

 QPDFObjectHandle trailer = pdf.getTrailer();

 if (trailer.hasKey("/Info"))

 {

 QPDFObjectHandle info = trailer.getKey("/Info");

 std::set<std::string> keys = info.getKeys();

 for (std::set<std::string>::const_iterator it = keys.begin();

 keys.end() != it; ++it)

 {

 QPDFObjectHandle elt = info.getKey(*it);

 std::string val;

 if (false) {}

 else if (elt.isString())

 {

 val = elt.getStringValue();

 }

 else if (elt.isName())

 {

 val = elt.getName();

 }

 else // according to PDF Spec 1.5, shouldn't happen

 {

 val = elt.unparseResolved();

 }

 os << it->substr(1) << sep << val << std::endl; // skip '/'

 }

 }

}

void pdfDumpInfoDict(char const* fname)

{

 try

 {

 QPDF pdf;

 pdf.processFile(fname);

 dumpInfoDict(pdf);

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

}

int main(int argc, char* argv[])

{

 bool static_id = false;

 std::map<std::string, std::string> Keys;

 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 if ((argc == 2) && (! strcmp(argv[1], "--version")))

 {

 std::cout << whoami << " version " << version << std::endl;

 exit(0);

 }

 if ((argc == 4) && (! strcmp(argv[1], "--dump")) &&

 (strcmp(argv[2], "-in") == 0))

 {

 QTC::TC("examples", "pdf-mod-info --dump");

 pdfDumpInfoDict(argv[3]);

 exit(0);

 }

 char* fl_in = 0;

 char* fl_out = 0;

 std::string cur_key;

 for (int i = 1; i < argc; ++i)

 {

 if ((! strcmp(argv[i], "-in")) && (++i < argc))

 {

 fl_in = argv[i];

 }

 else if ((! strcmp(argv[i], "-out")) && (++i < argc))

 {

 fl_out = argv[i];

 }

 else if (! strcmp(argv[i], "--static-id")) // don't document

 {

 static_id = true; // this should be used in test suites only

 }

 else if ((! strcmp(argv[i], "-key")) && (++i < argc))

 {

 QTC::TC("examples", "pdf-mod-info -key");

 cur_key = argv[i];

 if (! ((cur_key.length() > 0) && (cur_key.at(0) == '/')))

 {

 cur_key = "/" + cur_key;

 }

 Keys[cur_key] = "";

 }

 else if ((! strcmp(argv[i], "-val")) && (++i < argc))

 {

 if (cur_key.empty())

 {

 QTC::TC("examples", "pdf-mod-info usage wrong val");

 usage();

 }

 QTC::TC("examples", "pdf-mod-info -val");

 Keys[cur_key] = argv[i];

 cur_key.clear();

 }

 else

 {

 QTC::TC("examples", "pdf-mod-info usage junk");

 usage();

 }

 }

 if (! fl_in)

 {

 QTC::TC("examples", "pdf-mod-info no in file");

 usage();

 }

 if (! fl_out)

 {

 QTC::TC("examples", "pdf-mod-info in-place");

 fl_out = fl_in;

 }

 if (Keys.size() == 0)

 {

 QTC::TC("examples", "pdf-mod-info no keys");

 usage();

 }

 std::string fl_tmp = fl_out;

 fl_tmp += ".tmp";

 try

 {

 QPDF file;

 file.processFile(fl_in);

 QPDFObjectHandle filetrailer = file.getTrailer();

 QPDFObjectHandle fileinfo;

 for (std::map<std::string, std::string>::const_iterator it =

 Keys.begin(); Keys.end() != it; ++it)

 {

 if (! fileinfo.isInitialized())

 {

 if (filetrailer.hasKey("/Info"))

 {

 QTC::TC("examples", "pdf-mod-info has info");

 fileinfo = filetrailer.getKey("/Info");

 }

 else

 {

 QTC::TC("examples", "pdf-mod-info file no info");

 fileinfo = QPDFObjectHandle::newDictionary();

 filetrailer.replaceKey("/Info", fileinfo);

 }

 }

 if (it->second == "")

 {

 fileinfo.removeKey(it->first);

 }

 else

 {

 QPDFObjectHandle elt = fileinfo.newString(it->second);

 elt.makeDirect();

 fileinfo.replaceKey(it->first, elt);

 }

 }

 QPDFWriter w(file, fl_tmp.c_str());

 w.setStreamDataMode(qpdf_s_preserve);

 w.setLinearization(true);

 w.setStaticID(static_id);

 w.write();

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 try

 {

 (void) remove(fl_out);

 QUtil::os_wrapper("rename " + fl_tmp + " " + std::string(fl_out),

 rename(fl_tmp.c_str(), fl_out));

 }

 catch (std::exception& e)

 {

 std::cerr << e.what() << std::endl;

 exit(2);

 }

 return 0;

}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-npages.cc
#include <iostream>
#include <string.h>
#include <stdlib.h>

#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " filename" << std::endl
	 << "Prints the number of pages in filename" << std::endl;
 exit(2);
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if ((argc == 2) && (strcmp(argv[1], "--version") == 0))
 {
	std::cout << whoami << " version 1.3" << std::endl;
	exit(0);
 }

 if (argc != 2)
 {
	usage();
 }
 char const* filename = argv[1];

 try
 {
	QPDF pdf;
	pdf.processFile(filename);
	QPDFObjectHandle root = pdf.getRoot();
	QPDFObjectHandle pages = root.getKey("/Pages");
	QPDFObjectHandle count = pages.getKey("/Count");
	std::cout << count.getIntValue() << std::endl;
 }
 catch (std::exception& e)
 {
	std::cerr << whoami << ": " << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-parse-content.cc
#include <iostream>
#include <string.h>
#include <stdlib.h>

#include <qpdf/QPDF.hh>
#include <qpdf/QUtil.hh>

static char const* whoami = 0;

void usage()
{
 std::cerr << "Usage: " << whoami << " filename page-number" << std::endl
	 << "Prints a dump of the objects in the content streams"
 << " of the given page." << std::endl
 << "Pages are numbered from 1." << std::endl;
 exit(2);
}

class ParserCallbacks: public QPDFObjectHandle::ParserCallbacks
{
 public:
 virtual ~ParserCallbacks()
 {
 }

 virtual void handleObject(QPDFObjectHandle);
 virtual void handleEOF();
};

void
ParserCallbacks::handleObject(QPDFObjectHandle obj)
{
 std::cout << obj.getTypeName() << ": ";
 if (obj.isInlineImage())
 {
 std::cout << QUtil::hex_encode(obj.getInlineImageValue()) << std::endl;
 }
 else
 {
 std::cout << obj.unparse() << std::endl;
 }
}

void
ParserCallbacks::handleEOF()
{
 std::cout << "-EOF-" << std::endl;
}

int main(int argc, char* argv[])
{
 whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....
 if (strncmp(whoami, "lt-", 3) == 0)
 {
	whoami += 3;
 }

 if (argc != 3)
 {
	usage();
 }
 char const* filename = argv[1];
 int pageno = atoi(argv[2]);

 try
 {
	QPDF pdf;
	pdf.processFile(filename);
 std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
 if ((pageno < 1) || (static_cast<size_t>(pageno) > pages.size()))
 {
 usage();
 }

 QPDFObjectHandle page = pages.at(pageno-1);
 QPDFObjectHandle contents = page.getKey("/Contents");
 ParserCallbacks cb;
 QPDFObjectHandle::parseContentStream(contents, &cb);
 }
 catch (std::exception& e)
 {
	std::cerr << whoami << ": " << e.what() << std::endl;
	exit(2);
 }

 return 0;
}

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-split-pages.cc

@unixroot/usr/share/doc/qpdf-devel-6.0.0/pdf-split-pages.cc
//

// This is a stand-alone example of splitting a PDF into individual

// pages. It is much faster than using the qpdf command-line tool to

// split into separate files per page.

//

#include <qpdf/QPDF.hh>

#include <qpdf/QPDFWriter.hh>

#include <qpdf/QUtil.hh>

#include <string>

#include <iostream>

#include <cstdlib>

static bool static_id = false;

static void process(char const* whoami,

 char const* infile,

 std::string outprefix)

{

 QPDF inpdf;

 inpdf.processFile(infile);

 std::vector<QPDFObjectHandle> const& pages = inpdf.getAllPages();

 int pageno_len = QUtil::int_to_string(pages.size()).length();

 int pageno = 0;

 for (std::vector<QPDFObjectHandle>::const_iterator iter = pages.begin();

 iter != pages.end(); ++iter)

 {

 QPDFObjectHandle page = *iter;

 std::string outfile =

 outprefix + QUtil::int_to_string(++pageno, pageno_len) + ".pdf";

 QPDF outpdf;

 outpdf.emptyPDF();

 outpdf.addPage(page, false);

 QPDFWriter outpdfw(outpdf, outfile.c_str());

 if (static_id)

 {

 // For the test suite, uncompress streams and use static

 // IDs.

 outpdfw.setStaticID(true); // for testing only

 outpdfw.setStreamDataMode(qpdf_s_uncompress);

 }

 outpdfw.write();

 }

}

int main(int argc, char* argv[])

{

 char* whoami = QUtil::getWhoami(argv[0]);

 // For libtool's sake....

 if (strncmp(whoami, "lt-", 3) == 0)

 {

 whoami += 3;

 }

 // For test suite

 if ((argc > 1) && (strcmp(argv[1], " --static-id") == 0))

 {

 static_id = true;

 --argc;

 ++argv;

 }

 if (argc != 3)

 {

 std::cerr << "Usage: " << whoami << " infile outprefix" << std::endl;

 }

 try

 {

 process(whoami, argv[1], argv[2]);

 }

 catch (std::exception e)

 {

 std::cerr << whoami << ": exception: " << e.what() << std::endl;

 return 2;

 }

 return 0;

}

@unixroot/usr/share/doc/qpdf-libs-6.0.0/Artistic-2.0
Artistic License 2.0

Copyright (c) 2000-2006, The Perl Foundation.

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

This license establishes the terms under which a given free software
Package may be copied, modified, distributed, and/or
redistributed. The intent is that the Copyright Holder maintains some
artistic control over the development of that Package while still
keeping the Package available as open source and free software.

You are always permitted to make arrangements wholly outside of this
license directly with the Copyright Holder of a given Package. If the
terms of this license do not permit the full use that you propose to
make of the Package, you should contact the Copyright Holder and seek
a different licensing arrangement.

Definitions

 "Copyright Holder" means the individual(s) or organization(s) named
 in the copyright notice for the entire Package.

 "Contributor" means any party that has contributed code or other
 material to the Package, in accordance with the Copyright Holder's
 procedures.

 "You" and "your" means any person who would like to copy,
 distribute, or modify the Package.

 "Package" means the collection of files distributed by the
 Copyright Holder, and derivatives of that collection and/or of
 those files. A given Package may consist of either the Standard
 Version, or a Modified Version.

 "Distribute" means providing a copy of the Package or making it
 accessible to anyone else, or in the case of a company or
 organization, to others outside of your company or organization.

 "Distributor Fee" means any fee that you charge for Distributing
 this Package or providing support for this Package to another
 party. It does not mean licensing fees.

 "Standard Version" refers to the Package if it has not been
 modified, or has been modified only in ways explicitly requested by
 the Copyright Holder.

 "Modified Version" means the Package, if it has been changed, and
 such changes were not explicitly requested by the Copyright Holder.

 "Original License" means this Artistic License as Distributed with
 the Standard Version of the Package, in its current version or as
 it may be modified by The Perl Foundation in the future.

 "Source" form means the source code, documentation source, and
 configuration files for the Package.

 "Compiled" form means the compiled bytecode, object code, binary,
 or any other form resulting from mechanical transformation or
 translation of the Source form.

Permission for Use and Modification Without Distribution

(1) You are permitted to use the Standard Version and create and use
Modified Versions for any purpose without restriction, provided that
you do not Distribute the Modified Version.

Permissions for Redistribution of the Standard Version

(2) You may Distribute verbatim copies of the Source form of the
Standard Version of this Package in any medium without restriction,
either gratis or for a Distributor Fee, provided that you duplicate
all of the original copyright notices and associated disclaimers. At
your discretion, such verbatim copies may or may not include a
Compiled form of the Package.

(3) You may apply any bug fixes, portability changes, and other
modifications made available from the Copyright Holder. The resulting
Package will still be considered the Standard Version, and as such
will be subject to the Original License.

Distribution of Modified Versions of the Package as Source

(4) You may Distribute your Modified Version as Source (either gratis
or for a Distributor Fee, and with or without a Compiled form of the
Modified Version) provided that you clearly document how it differs
from the Standard Version, including, but not limited to, documenting
any non-standard features, executables, or modules, and provided that
you do at least ONE of the following:

 (a) make the Modified Version available to the Copyright Holder of
 the Standard Version, under the Original License, so that the
 Copyright Holder may include your modifications in the Standard
 Version.

 (b) ensure that installation of your Modified Version does not
 prevent the user installing or running the Standard Version. In
 addition, the Modified Version must bear a name that is different
 from the name of the Standard Version.

 (c) allow anyone who receives a copy of the Modified Version to
 make the Source form of the Modified Version available to others
 under

 (i) the Original License or

 (ii) a license that permits the licensee to freely copy, modify
 and redistribute the Modified Version using the same licensing
 terms that apply to the copy that the licensee received, and
 requires that the Source form of the Modified Version, and of
 any works derived from it, be made freely available in that
 license fees are prohibited but Distributor Fees are allowed.
 Distribution of Compiled Forms of the Standard Version or
 Modified Versions without the Source

(5) You may Distribute Compiled forms of the Standard Version without
the Source, provided that you include complete instructions on how to
get the Source of the Standard Version. Such instructions must be
valid at the time of your distribution. If these instructions, at any
time while you are carrying out such distribution, become invalid, you
must provide new instructions on demand or cease further
distribution. If you provide valid instructions or cease distribution
within thirty days after you become aware that the instructions are
invalid, then you do not forfeit any of your rights under this
license.

(6) You may Distribute a Modified Version in Compiled form without the
Source, provided that you comply with Section 4 with respect to the
Source of the Modified Version.

Aggregating or Linking the Package

(7) You may aggregate the Package (either the Standard Version or
Modified Version) with other packages and Distribute the resulting
aggregation provided that you do not charge a licensing fee for the
Package. Distributor Fees are permitted, and licensing fees for other
components in the aggregation are permitted. The terms of this license
apply to the use and Distribution of the Standard or Modified Versions
as included in the aggregation.

(8) You are permitted to link Modified and Standard Versions with
other works, to embed the Package in a larger work of your own, or to
build stand-alone binary or bytecode versions of applications that
include the Package, and Distribute the result without restriction,
provided the result does not expose a direct interface to the Package.

Items That are Not Considered Part of a Modified Version

(9) Works (including, but not limited to, modules and scripts) that
merely extend or make use of the Package, do not, by themselves, cause
the Package to be a Modified Version. In addition, such works are not
considered parts of the Package itself, and are not subject to the
terms of this license.

General Provisions

(10) Any use, modification, and distribution of the Standard or
Modified Versions is governed by this Artistic License. By using,
modifying or distributing the Package, you accept this license. Do not
use, modify, or distribute the Package, if you do not accept this
license.

(11) If your Modified Version has been derived from a Modified Version
made by someone other than you, you are nevertheless required to
ensure that your Modified Version complies with the requirements of
this license.

(12) This license does not grant you the right to use any trademark,
service mark, tradename, or logo of the Copyright Holder.

(13) This license includes the non-exclusive, worldwide,
free-of-charge patent license to make, have made, use, offer to sell,
sell, import and otherwise transfer the Package with respect to any
patent claims licensable by the Copyright Holder that are necessarily
infringed by the Package. If you institute patent litigation
(including a cross-claim or counterclaim) against any party alleging
that the Package constitutes direct or contributory patent
infringement, then this Artistic License to you shall terminate on the
date that such litigation is filed.

(14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@unixroot/usr/share/doc/qpdf-libs-6.0.0/ChangeLog
2015-11-10 Jay Berkenbilt <ejb@ql.org>

	* 6.0.0: release

	* No changes from 5.2.0. The 5.2.0 release broke binary
	compatibility and was withdrawn.

2015-10-31 Jay Berkenbilt <ejb@ql.org>

	* 5.2.0: release

	* libqpdf/QPDF.cc (read_xrefTable): Be tolerant of some malformed
	xref tables that don't have the required trailing space after each
	line.

2015-10-29 Jay Berkenbilt <ejb@ql.org>

	* Implement QPDFWriter::setDeterministicID and --deterministic-id
	commandline-flag to qpdf to request generation of a deterministic
	/ID for non-encrypted files.

2015-05-24 Jay Berkenbilt <ejb@ql.org>

	* 5.1.3: release

	* Bug fix: fix-qdf was not handling object streams with more than
	255 objects in them.

	* Handle Microsoft crypt provider initialization properly for case
	where no keys have been previously created, such as in a fresh
	Windows installation.

	* Include time.h in QUtil.hh for time_t

2015-02-21 Jay Berkenbilt <ejb@ql.org>

	* Detect loops in Pages structure. Thanks to Gynvael Coldwind and
	Mateusz Jurczyk of the Google Security Team for providing a sample
	file with this problem.

	* Prevent buffer overrun when converting a password to an
	encryption key. Thanks to Gynvael Coldwind and Mateusz Jurczyk of
	the Google Security Team for providing a sample file with this
	problem.

	* Ensure that arguments to "R" when parsing the file are direct
	objects before trying to resolve them. This prevents specially
	crafted files from causing qpdf to crash with a stack overflow.
	Thanks to Gynvael Coldwind and Mateusz Jurczyk of the Google
	Security Team for providing a sample file with this problem.

2014-12-01 Jay Berkenbilt <ejb@ql.org>

	* Some broken PDF files lack the required /Type key for /Page and
	/Pages nodes in the page dictionary. QPDF now uses other methods
	to figure out what kind of node it is looking at so that it can
	handle those files. Original reported at
	https://bugs.launchpad.net/ubuntu/+source/qpdf/+bug/1397413

2014-11-14 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: QPDFObjectHandle::getPageContents() no longer throws an
	exception when called on a page that has no /Contents key in its
	dictionary. This is allowed by the spec, and some software
	packages generate files like this for pages that are blank in the
	original.

2014-06-07 Jay Berkenbilt <ejb@ql.org>

	* 5.1.2: release

	* MS Visual C++ build: explicitly target Windows 5.0.1 (XP)

	* New example program: pdf-split-pages: efficiently split PDF
	files into individual pages.

	* Bug fix: don't fail on files that contain streams where /Filter
	or /DecodeParms references a stream. Before, qpdf would try to
	convert these to direct objects, which would fail because of the
	stream.

2014-02-22 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: if the last object in the first part of a linearized
	file had an offset that was below 65536 by less than the size of
	the hint stream, the xref stream was invalid and the resulting file
	is not usable. This is now fixed.

2014-01-14 Jay Berkenbilt <ejb@ql.org>

	* 5.1.1: release

2013-12-26 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: when copying foreign objects (which occurs during page
	splitting among other cases), avoid traversing the same object
	more than once if it appears more than once in the same direct
	object. This bug is performance-only and does not affect the
	actual output.

2013-12-17 Jay Berkenbilt <ejb@ql.org>

	* 5.1.0: release

2013-12-16 Jay Berkenbilt <ejb@ql.org>

	* Document and make explicit that passing null to
	QUtil::setRandomDataProvider() resets the random data provider.

	* Provide QUtil::getRandomDataProvider().

2013-12-14 Jay Berkenbilt <ejb@ql.org>

	* Allow anyspace rather than just newline to follow xref header.
	This allows qpdf to read a wider range of damaged files.

2013-11-30 Jay Berkenbilt <ejb@ql.org>

	* Allow user-supplied random data provider to be used in place of
	OS-provided or insecure random number generation. See
	documentation for 5.1.0 for details.

	* Add configure option --enable-os-secure-random (enabled by
	default). Pass --disable-os-secure-random or define
	SKIP_OS_SECURE_RANDOM to avoid attempts to use the operating
	system-provided secure random number generation. This can be
	especially useful on Windows if you wish to avoid any dependency
	on Microsoft's cryptography system.

2013-11-29 Jay Berkenbilt <ejb@ql.org>

	* If NO_GET_ENVIRONMENT is #defined, for Windows only,
	QUtil::get_env will always return false. This was added to
	support a user who needs to avoid calling GetEnvironmentVariable
	from the Windows API. QUtil::get_env is not used for any
	functionality in qpdf and exists only to support the test suite
	including test coverage support with QTC (part of qtest).

	* Add /FS to msvc builds to allow parallel builds to work with
	Visual C++ 2013.

	* Add missing #include <algorithm> in some files that use std::min
	and std::max.

2013-11-21 Jay Berkenbilt <ejb@ql.org>

	* Change image comparison tests, which are disabled by default, to
	use tiff files with 8 bits per sample rather than 4. This works
	around a bug in tiffcmp but also increases time and disk space for
	image comparison tests.

2013-10-28 Jay Berkenbilt <ejb@ql.org>

	* Fix MacOS compilation errors by adding a missing #include
	<string> in a header file.

2013-10-18 Jay Berkenbilt <ejb@ql.org>

	* 5.0.1: release

	* Warn when -accessibility=n is specified with a modern encryption
	format (R > 3). Also, accept this flag (and ignore with warning)
	with 256-bit encryption. qpdf has always ignored the
	accessibility setting with R > 3, but it previously did so
	silently.

2013-10-05 Jay Berkenbilt <ejb@ql.org>

	* Replace operator[] in std::string and std::vector with "at" in
	order to get bounds checking. This reduces the chances that
	incorrect code will result in data exposure or buffer overruns.
	See README.hardening for additional notes.

	* Use cryptographically secure random number generation when
	available. See additional notes in README.

	* Replace some assert() calls with std::logic_error exceptions.
	Ideally there shouldn't be assert() calls outside of testing.
	This change may make a few more potential code errors in handling
	invalid data recoverable.

	* Security fix: In places where std::vector<T>(size_t) was used,
	either validate that the size parameter is sane or refactor code
	to avoid the need to pre-allocate the vector. This reduces the
	likelihood of allocating a lot of memory in response to invalid
	data in linearization hint streams.

	* Security fix: sanitize /W array in cross reference stream to
	avoid a potential integer overflow in a multiplication. It is
	unlikely that any exploits were possible from this bug as
	additional checks were also performed.

	* Security fix: avoid buffer overrun that could be caused by bogus
	data in linearization hint streams. The incorrect code could only
	be triggered when checking linearization data, which must be
	invoked explicitly. qpdf does not check linearization data when
	reading or writing linearized files, but the qpdf --check command
	does check linearization data.

	* Security fix: properly handle empty strings in
	QPDF_Name::normalizeName. The empty string is not a valid name
	and would never be parsed as a name, so there were no known
	conditions where this method could be called with an empty string.

	* Security fix: perform additional argument sanity checks when
	reading bit streams.

	* Security fix: in QUtil::toUTF8, change bounds checking to avoid
	having a pointer point temporarily outside the bounds of an
	array. Some compiler optimizations could have made the original
	code unsafe.

2013-07-10 Jay Berkenbilt <ejb@ql.org>

	* 5.0.0: release

	* 4.2.0 turned out to be binary incompatible on some platforms
	even though there were no changes to the public API. Therefore
	the 4.2.0 release has been withdrawn, and is being replaced with a
	5.0.0 release that acknowledges the ABI change and also removes
	some problematic methods from the public API.

	* Remove methods from public API that were only intended to be
	used by QPDFWriter and really didn't make sense to call from
	anywhere else as they required internal knowledge that only
	QPDFWriter had:
	 - QPDF::getLinearizedParts
	 - QPDF::generateHintStream
	 - QPDF::getObjectStreamData
	 - QPDF::getCompressibleObjGens
	 - QPDF::getCompressibleObjects

2013-07-07 Jay Berkenbilt <ejb@ql.org>

	* 4.2.0: release [withdrawn]

	* Ignore error case of a stream's decode parameters having invalid
	length when there are no stream filters.

	* qpdf: add --show-npages command-line option, which causes the
	number of pages in the input file to be printed on a line by
	itself.

	* qpdf: allow omission of range in --pages. If range is omitted
	such that an argument that is supposed to be a range is an invalid
	range and a valid file name, the range of 1-z is assumed. This
	makes it possible to merge a bunch of files with something like
	qpdf --empty out.pdf --pages *.pdf --

2013-06-15 Jay Berkenbilt <ejb@ql.org>

	* Handle some additional broken files with missing /ID in trailer
	for encrypted files and with space rather than newline after xref.

2013-06-14 Jay Berkenbilt <ejb@ql.org>

	* Detect and correct /Outlines dictionary being a direct object
	when linearizing files. This is not allowed by the spec but has
	been seen in the wild. Prior to this change, such a file would
	cause an internal error in the linearization code, which assumed
	/Outlines was indirect.

	* Add /Length key to crypt filter dictionary for encrypted files.
	This key is optional, but some version of MacOS reportedly fail to
	open encrypted PDF files without this key.

	* Bug fix: properly handle object stream generation when the
	original file has some compressible objects with generation != 0.

	* Add QPDF::getCompressibleObjGens() and deprecate
	QPDF::getCompressibleObjects(), which had a flaw in its logic.

	* Add new QPDFObjectHandle::getObjGen() method and indiciate in
	comments that its use is favored over getObjectID() and
	getGeneration() for most cases.

	* Add new QPDFObjGen object to represent an object ID/generation
	pair.

2013-04-14 Jay Berkenbilt <ejb@ql.org>

	* 4.1.0: release

2013-03-25 Jay Berkenbilt <ejb@ql.org>

	* manual/qpdf-manual.xml: Document the casting policy that is
	followed in qpdf's implementation.

2013-03-11 Jay Berkenbilt <ejb@ql.org>

	* When creating Windows binary distributions, make sure to only
	copy DLLs of the correct type. The ensures that the 32-bit
	distributions contain 32-bit DLLs and the 64-bit distributions
	contain 64-bit DLLs.

2013-03-07 Jay Berkenbilt <ejb@ql.org>

	* Use ./install-sh (already present) instead of "install -c" to
	install executables to fix portability problems against different
	UNIX variants.

2013-03-03 Jay Berkenbilt <ejb@ql.org>

	* Add protected terminateParsing method to
	QPDFObjectHandle::ParserCallbacks that implementor can call to
	terminate parsing of a content stream.

2013-02-28 Jay Berkenbilt <ejb@ql.org>

	* Favor fopen_s and strerror_s on MSVC to avoid CRT security
	warnings. This is useful for people who may want to use qpdf in
	an application that is Windows 8 certified.

	* New method QUtil::safe_fopen to wrap calls to fopen. This is
	less cumbersome than calling QUtil::fopen_wrapper.

	* Remove all calls to sprintf

	* New method QUtil::int_to_string_base to convert to octal or
	hexademical (or decimal) strings without using sprintf

2013-02-26 Jay Berkenbilt <ejb@ql.org>

	* Rewrite QUtil::int_to_string and QUtil::double_to_string to
	remove internal length limits but to remain backward compatible
	with the old versions for valid inputs.

2013-02-23 Jay Berkenbilt <ejb@ql.org>

	* Bug fix: properly handle overridden compressed objects. When
	caching objects from an object stream, only cache objects that,
	based on the xref table, would actually be resolved into this
	stream. Prior to this fix, if an object stream A contained an
	object B that was overridden by an appended section of the file,
	qpdf would cache the old value of B if any non-overridden member
	of A was accessed before B. This commit fixes that bug.

2013-01-31 Jay Berkenbilt <ejb@ql.org>

	* Do not remove libtool's .la file during the make install step.
	Note to packagers: if your distribution wants to you remove the
	.la file, you will have to do that yourself now.

2013-01-25 Jay Berkenbilt <ejb@ql.org>

	* New method QUtil::hex_encode to encode binary data as a
	hexadecimal string

	* qpdf --check was exiting with status 0 in some rare cases even
	when errors were found. It now always exits with one of the
	document error codes (0 for success, 2 for errors, 3 or warnings).

2013-01-24 Jay Berkenbilt <ejb@ql.org>

	* Make --enable-werror work for MSVC, and generally handle warning
	options better for that compiler. Warning flags for that compiler
	were previous hard-coded into the build with /WX enabled
	unconditionally.

	* Split warning flags into WFLAGS in autoconf.mk to make them
	easier to override. Before they were repeated in CFLAGS and
	CXXFLAGS and were commingled with other compiler flags.

	* qpdf --check now does syntactic checks all pages' content
	streams as well as checking overall document structure. Semantic
	errors are still not checked, and there are no plans to add
	semantic checks.

2013-01-22 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::getTypeCode(). This method returns a
	unique integer (enumerated type) value corresponding to the object
	type of the QPDFObjectHandle. It can be used as an alternative to
	the QPDFObjectHandle::is* methods for type testing, particularly
	where there is a desire to use a switch statement or optimize for
	performance when testing object types.

	* Add QPDFObjectHandle::getTypeName(). This method returns a
	string literal describing the object type. It is useful for
	testing and debugging.

2013-01-20 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::parseContentStream, which parses the
	objects in a content stream and calls handlers in a callback
	class. The example pdf-parse-content illustrates it use.

	* Add QPDF_Operator and QPDF_InlineImage types along with
	appropriate wrapper methods in QPDFObjectHandle. These new object
	types are to facilitate content stream parsing.

2013-01-17 Jay Berkenbilt <ejb@ql.org>

	* 4.0.1: release

	* Add clarifying comment in QPDF.hh for methods that return the
	user password to state that it is no longer possible with newer
	encryption formats to recover the user password knowing the owner
	password.

	* Fix detection of binary attachments in the test suite. This
	resolves false test failures on some platforms. No changes to the
	actual QPDF code were made.

2012-12-31 Jay Berkenbilt <ejb@ql.org>

	* 4.0.0: release

	* Add new methods qpdf_get_pdf_extension_level,
	qpdf_set_r5_encryption_parameters,
	qpdf_set_r6_encryption_parameters,
	qpdf_set_minimum_pdf_version_and_extension, and
	qpdf_force_pdf_version_and_extension to support new functionality
	from the C API.

2012-12-30 Jay Berkenbilt <ejb@ql.org>

	* Fix long-standing bug that could theoretically have resulted in
	possible misinterpretation of decode parameters in streams. As
	far as I can tell, it is extremely unlikely that files with the
	characteristics that would have triggered the bug actually exist
	in cases that qpdf versions prior to 4.0.0 could have read.
	Unencrypted files with encrypted attachments would have triggered
	this bug, but qpdf versions prior to 4.0.0 already refused to open
	such files.

	* Fix long-standing bug in which a stream that used a crypt
	filter and was otherwise not filterable by qpdf would be decrypted
	properly but would retain the crypt filter indication in the
	file. There are no known ways to create files like this, so it is
	unlikely that anyone ever hit this bug.

2012-12-29 Jay Berkenbilt <ejb@ql.org>

	* Add read/write support for both the deprecated Acrobat IX
	encryption format and the Acrobat X/PDF 2.0 encryption format
	using 256-bit AES keys. Using the Acrobat IX format (R=5) forces
	the version of the file to 1.7 with extension level 3. Using the
	PDF 2.0 format (R=6) forces it to 1.7 extension level 8.

	* Add new method QPDF::getEncryptionKey to return the actual
	encryption key used for encryption of data in the file. The key
	is returned as a std::string.

	* Non-compatible API change: change signature of
	QPDF::compute_data_key to take the R and V values from the
	encryption dictionary. There is no reason for any application
	code to call this method since handling of encryption is done
	automatically by the qpdf libary. It is used internally by
	QPDFWriter.

	* Support reading and decryption of files whose main text is not
	encrypted but whose attachments are. More generally, support the
	case of files and streams encrypted differently with some
	limitations, described in the documentation. This was not
	previously supported due to lack of test files, but I created test
	files using a trial version of Acrobat XI to fully implement this
	case.

	* Incorporate sha2 code from sphlib 3.0. See README for
	licensing. Create private pipeline class for computing hashes
	with sha256, sha384, and sha512.

	* Allow specification of initialization vector when using AES
	filtering. This is required to compute the hash used in /R=6 (PDF
	2.0) encryption.

2012-12-28 Jay Berkenbilt <ejb@ql.org>

	* Add random number generation functions to QUtil.

	* Fix old bug that could cause an infinite loop if user password
	recovery methods were called and a password contained the "("
	character (which happens to be the first byte of padding used by
	older PDF encryption formats). This bug was noticed while reading
	code and would not happen under ordinary usage patterns even if
	the password contained that character.

2012-12-27 Jay Berkenbilt <ejb@ql.org>

	* Add awareness of extension level to PDF Version methods for both
	reading and writing. This includes adding method
	QPDF::getExtensionLevel and new versions of
	QPDFWriter::setMinimumPDFVersion and QPDFWriter::forcePDFVersion
	that support extension levels. The qpdf command-line tool
	interprets version numbers of the form x.y.z as version x.y at
	extension level z.

	* Update AES classes to support use of 256-bit keys.

	* Non-compatible API change: Removed public method
	QPDF::flattenScalarReferences. Instead, just flatten the scalar
	references we actually need to flatten. Flattening scalar
	references was a wrong decision years ago and has occasionally
	caused other problems, among which were that it caused qpdf to
	visit otherwise unreferenced and possibly erroneous objects in the
	file when it didn't have to. There's no reason that any
	non-internal code would have had to call this.

	* Non-compatible API change: Removed public method
	QPDF::decodeStreams which was previously used by qpdf --check but
	is no longer used. The decodeStreams method could generate false
	positives since it would attempt to access all objects in the file
	including those that were not referenced. There's no reason that
	any non-internal code would have had to call this.

	* Non-compatible API change: Removed public method
	QPDF::trimTrailerForWrite, which was only intended for use by
	QPDFWriter and which is no longer used.

2012-12-26 Jay Berkenbilt <ejb@ql.org>

	* Add new fields to QPDF::EncryptionData to support newer
	encryption formats (V=5, R=5 and R=6)

	* Non-compatible API change: Change public nested class
	QPDF::EncryptionData to make all member fields private and to add
	method calls. This is a non-compatible API change, but changing
	EncryptionData is necessary to support newer encryption formats,
	and making this change will prevent the need from making a
	non-compatible change in the future if new fields are added. A
	public nested class should never have had public members to begin
	with.

2012-12-25 Jay Berkenbilt <ejb@ql.org>

	* Allow PDF header to appear anywhere in the first 1024 bytes of
	the file as recommended in the implementation notes of the Adobe
	version of the PDF spec.

2012-11-20 Jay Berkenbilt <ejb@ql.org>

	* Add zlib and libpcre to Requires.private in the pkg-config file
	to support static linking. Thanks Tobias Hoffmann for pointing
	out the omission.

	* Ignore (with warning) non-freed objects in the xref table whose
	offset is 0. Some PDF producers (incorrectly) do this. See
	https://bugs.linuxfoundation.org/show_bug.cgi?id=1081.

2012-09-23 Jay Berkenbilt <ejb@ql.org>

	* Add public methods QPDF::processInputSource and
	QPDFWriter::setOutputPipeline to allow users to read from custom
	input sources and to write to custom pipelines. This allows the
	maximum flexibility in sources for reading and writing PDF files.

2012-09-06 Jay Berkenbilt <ejb@ql.org>

	* 3.0.2: release

	* Add new method QPDFWriter::setExtraHeaderText to add extra text,
	such as application-specific comments, to near the beginning of a
	PDF file. For linearized files, this appears after the
	linearization parameter dictionary. For non-linearized files, it
	appears right after the PDF header and non-ASCII comment.

	* Make it possible to write the same QPDF object with two
	different QPDFWriter objects that have both called
	setLinearization(true) by making private method
	QPDF::calculateLinearizationData() properly initialize its state.

	* Bug fix: Writing after calling QPDFWriter::setOutputMemory()
	would cause a segmentation fault because of an internal field not
	being initialized, rendering that method useless. This has been
	corrected.

2012-08-11 Jay Berkenbilt <ejb@ql.org>

	* 3.0.1: release

	* Bug fix: let EOF terminate a literal token as well as
	whitespace or comments.

2012-07-31 Jay Berkenbilt <ejb@ql.org>

	* 3.0.0: release

2012-07-29 Jay Berkenbilt <ejb@ql.org>

	* 3.0.rc1: release

2012-07-25 Jay Berkenbilt <ejb@ql.org>

	* From Tobias: add QPDFObjectHandle::replaceStreamData that takes
	a std::string analogous to the QPDFObjectHandle::newStream that
	takes a string that was added earlier.

2012-07-21 Jay Berkenbilt <ejb@ql.org>

	* Change configure to have image comparison tests disabled by
	default. Update README and README.maintainer with information
	about running them.

	* Add --pages command-line option to qpdf to enable page-based
	merging and splitting.

	* Add new method QPDFObjectHandle::replaceDict to replace a
	stream's dictionary. Use with caution; see comments in
	QPDFObjectHandle.hh.

	* Add new method QPDFObjectHandle::parse for creation of
	QPDFObjectHandle objects from string representations of the
	objects. Thanks to Tobias Hoffmann for the idea.

2012-07-15 Jay Berkenbilt <ejb@ql.org>

	* add new QPDF::isEncrypted method that returns some additional
	information beyond other versions.

	* libqpdf/QPDFWriter.cc: fix copyEncryptionParameters to fix the
	minimum PDF version based on other file's encryption needs. This
	is a fix to code added on 2012-07-14 and did not impact previously
	released code.

	* libqpdf/QPDFWriter.cc (copyEncryptionParameters): Bug fix: qpdf
	was not preserving whether or not AES encryption was being used
	when copying encryption parameters. The file would still have
	been properly encrypted, but a file that started off encrypted
	with AES could have become encrypted with RC4.

2012-07-14 Jay Berkenbilt <ejb@ql.org>

	* QPDFWriter: add public copyEncryptionParameters to allow copying
	encryption parameters from another file.

	* QPDFWriter: detect if the user has inserted an indirect object
	from another QPDF object and throw an exception directing the user
	to copyForeignObject.

2012-07-11 Jay Berkenbilt <ejb@ql.org>

	* Added new APIs to copy objects from one QPDF to another. This
	includes letting QPDF::addPage() (and QPDF::addPageAt()) accept a
	page object from another QPDF and adding
	QPDF::copyForeignObject(). See QPDF.hh for details.

	* Add method QPDFObjectHandle::getOwningQPDF() to return the QPDF
	object associated with an indirect QPDFObjectHandle.

	* Add convenience methods to QPDFObjectHandle: assertIndirect(),
	isPageObject(), isPagesObject()

	* Cache when QPDF::pushInheritedAttributesToPage() has been called
	to avoid traversing the pages trees multiple times. This state is
	cleared by QPDF::updateAllPagesCache() and ignored by
	QPDF::flattenPagesTree().

2012-07-08 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::newReserved to create a reserved object
	and QPDF::replaceReserved to replace it with a real object.
	QPDFObjectHandle::newReserved reserves an object ID in a QPDF
	object and ensures that any references to it remain unresolved.
	When QPDF::replaceReserved is later called, previous references to
	the reserved object will properly resolve to the replaced object.

2012-07-07 Jay Berkenbilt <ejb@ql.org>

	* NOTE: BREAKING API CHANGE. Remove previously required length
	parameter from the version QPDFObjectHandle::replaceStreamData
	that uses a stream data provider. Prior to qpdf 3.0.0, you had to
	compute the stream length in advance so that qpdf could internally
	verify that the stream data had the same length every time the
	provider was invoked. Now this requirement is enforced a
	different way, and the length parameter is no longer required.
	Note that I take API-breaking changes very seriously and only did
	it in this case since the lack of need to know length in advance
	could significantly simplify people's code. If you were
	previously going to a lot of trouble to compute the length of the
	new stream data in advance, you now no longer have to do that.
	You can just drop the length parameter and remove any code that
	was previously computing the length. Thanks to Tobias Hoffmann
	for pointing out how annoying the original interface was.

2012-07-05 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFWriter methods to write to an already open stdio FILE*.
	Implementation and idea area based on contributions from Tobias
	Hoffmann.

2012-07-04 Jay Berkenbilt <ejb@ql.org>

	* Accept changes from Tobias Hoffmann: add public method
	QPDF::pushInheritedAttributesToPage including warnings for
	non-inherited keys that may be discarded from /Pages by
	non-conformant PDF files when the /Pages tree is flattened.

2012-06-27 Jay Berkenbilt <ejb@ql.org>

	* Add Pl_Concatenate pipeline for stream concatenation also
	implemented by Tobias Hoffmann. Also added test code
	(libtests/concatenate.cc).

	* Add new methods implemented by Tobias Hoffmann:
	QPDFObjectHandle::newReal(double) and
	QPDFObjectHandle::newStream(QPDF*, std::string const&).

2012-06-26 Jay Berkenbilt <ejb@ql.org>

	* Minor changes so that support for PDF files larger than 4GB
	works well with 32-bit and 64-bit Linux and also with 32-bit and
	64-bit Windows with both MSVC and mingw.

	* Rework internal methods for doing recovery of the cross
	reference tables for much greater efficiency both in terms of time
	and memory usage.

2012-06-24 Jay Berkenbilt <ejb@ql.org>

	* Support PDF files larger than 4 GB. This involved many changes
	to the ABI to increase the size of integer types used in various
	places as well as increasing the amount of padding used when
	creating linearized files. Automated tests for large files are
	disabled by default. Run ./configure --help for information on
	enabling them. Running the tests requires 11 GB of free disk
	space and takes several minutes.

2012-06-22 Jay Berkenbilt <ejb@ql.org>

	* examples/pdf-create.cc: Provide an example of creating a PDF
	from scratch. This simple PDF has a single page with some text
	and an image.

	* Add empty QPDFObjectHandle factories for array and dictionary.
	With PDF-from-scratch capability, it is useful to be able to
	create empty arrays and dictionaries and add keys to them.
	Updated pdf_from_scratch.cc to use these interfaces.

2012-06-21 Jay Berkenbilt <ejb@ql.org>

	* Add QPDF::emptyPDF() to create an empty QPDF object suitable for
	adding pages and other objects to. pdf_from_scratch.cc is test
	code that exercises it.

	* make/libtool.mk: Place user-specified CPPFLAGS and LDFLAGS later
	in the compilation so that if a user installs things in a
	non-standard place that they have to tell the build about, earlier
	versions of qpdf installed there won't break the build. Thanks to
	Macports for reporting this. (Fixes bug 3468860.)

	* Instead of using off_t in the public APIs, use qpdf_offset_t
	instead. This is defined as long long in qpdf/Types.h. If your
	system doesn't support long long, you can redefine it.

	* Add pkg-config files

	* QPDFObjectHandle: add shallowCopy() method

	* QPDF: add new APIs for adding and removing pages. This includes
	addPage(), addPageAt(), and removePage(). Also a method
	updateAllPagesCache() is now available to force update of the
	internal pages cache if you should modify the pages structure
	manually.

	* QPDF: new processFile method that takes an open FILE*
	instead of a filename.

2012-06-20 Jay Berkenbilt <ejb@ql.org>

	* Add new array mutation routines to QPDFObjectHandle.
	Implemented by Tobias Hoffmann.

	* Rework APIs that use size_t, off_t, and primative integer types
	so that size_t is used for sizes of memory and off_t is used for
	file offsets. Also set _FILE_OFFSET_BITS so that large files can
	be supported on 32-bit UNIX/Linux platforms. The code assumes in
	places that sizeof(off_t) >= sizeof(size_t). This resulted in
	non-compatible ABI changes and hopefully clears the way for QPDF
	to work with files that are larger than 4 GiB in size.

	* Add support for versioned symbols on ELF platforms.

	* Various fixes for gcc 4.7

2011-04-06 Jay Berkenbilt <ejb@ql.org>

 * Fix PCRE to stop using deprecated (and now dropped) interfaces.

2011-12-28 Jay Berkenbilt <ejb@ql.org>

	* 2.3.1: release

	* include <stdint.h> if available to support MSVC 2010

	* Since PCRE is not necessarily thread safe, don't declare any
	PCRE objects to be static.

	* Disregard stderr output from ghostscript when using it to
	compare images in the test suite; see comments in qpdf.test for
	details.

	* Fixed a few documentation errors.

2011-08-11 Jay Berkenbilt <ejb@ql.org>

	* 2.3.0: release

	* include/qpdf/qpdf-c.h ("C"): add new methods
	qpdf_init_write_memory, qpdf_get_buffer_length, and
	qpdf_get_buffer to support writing to memory from the C API.

	* include/qpdf/qpdf-c.h ("C"): add new methods qpdf_get_info_key
	and qpdf_set_info_key for manipulating text fields of the /Info
	dictionary.

2011-08-10 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDFWriter.cc (copyEncryptionParameters): preserve
	whether metadata is encryption. This fixes part of bug 3173659:
	the password becomes invalid if qpdf copies an encrypted file with
	cleartext-metadata.

	* include/qpdf/QPDFWriter.hh: add a new constructor that takes
	only a QPDF reference and leaves specification of output for
	later. Add methods setOutputFilename() to set the output to a
	filename or stdout, and setOutputMemory() to indicate that output
	should go to a memory buffer. Add method getBuffer() to retrieve
	the buffer used if output was saved to a memory buffer.

	* include/qpdf/QPDF.hh: add methods replaceObject() and
	swapObjects() to allow replacement of an object and swapping of
	two objects by object ID.

	* include/qpdf/QPDFObjectHandle.hh: add new methods getDictAsMap()
	and getArrayAsVector() for returning the elements of a dictionary
	or an array as a map or vector.

2011-06-25 Jay Berkenbilt <ejb@ql.org>

	* 2.2.4: release

2011-06-23 Jay Berkenbilt <ejb@ql.org>

	* make/libtool.mk (install): Do not strip executables and shared
	libraries during installation. Leave that up to the packager.

	* configure.ac: disable -Werror by default.

2011-05-07 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF_linearization.cc (isLinearized): remove unused
	offset variable, found by a gcc 4.6 warning.

2011-04-30 Jay Berkenbilt <ejb@ql.org>

	* 2.2.3: release

	* libqpdf/QPDF.cc (readObjectInternal): Accept the case of the
	stream keyword being followed by carriage return by itself. While
	this is not permitted by the specification, there are PDF files
	that do this, and other readers can read them.

	* libqpdf/Pl_QPDFTokenizer.cc (processChar): When an inline image
	is detected, suspend normalization only up to the end of the
	inline image rather than for the remainder of the content stream.
	(Fixes qpdf-Bugs 3152169.)

2011-01-31 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF.cc (readObjectAtOffset): use -1 rather than 0 when
	reading an object at a given to indicate that no object number is
	expected. This allows xref recovery to proceed even if a file
	uses the invalid object number 0 as a regular object.

	* libqpdf/QPDF_linearization.cc (isLinearized): use -1 rather than
	0 as a sentintel for not having found the first object in the
	file. Since -1 can never match the regular expression, this
	prevents an infinite loop when checking a file that starts with
	(erroneous) 0 0 obj. (Fixes qpdf-Bugs-3159950.)

2010-10-04 Jay Berkenbilt <ejb@ql.org>

	* 2.2.2: release

	* include/qpdf/qpdf-c.h: Add qpdf_read_memory to C API to call
	QPDF::processMemoryFile.

2010-10-01 Jay Berkenbilt <ejb@ql.org>

	* 2.2.1: release

	* include/qpdf/QPDF.hh: Add setOutputStreams method to allow
	redirection of library-generated output/error to alternative
	streams.

	* include/qpdf/QPDF.hh: Add processMemoryFile method for
	processing a PDF file from a memory buffer instead of a file.

2010-09-24 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF.cc: change private "file" method to be a
	PointerHolder<InputSource> to prepare qpdf for being able to work
	with PDF files loaded into memory in addition to working with
	files on disk.

	* include/qpdf/PointerHolder.hh: add operator* and operator->
	methods so that PointerHolder objects can be used like pointers.
	This is consistent with the smart pointer objects in the next
	revision of C++.

2010-09-05 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF.cc (readObjectInternal): Recognize empty objects
	and treat them as null.

	* libqpdf/QPDF_Stream.cc (filterable): Handle inline image filter
	abbreviations as stream filter abbreviations. Although this is
	not technically allowed by the PDF specification, table H.1 in the
	pre-ISO spec indicates that Adobe's readers accept them. Thanks
	to Jian Ma <stronghorse@tom.com> for bringing this to my
	attention.

2010-08-14 Jay Berkenbilt <ejb@ql.org>

	* 2.2.0: release

	* Rename README.windows to README-windows.txt and convert its line
	endings to Windows-style line endings. Also mention Jian Ma's VC6
	port in the manual and README-windows.txt.

2010-08-09 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::getRawStreamData to return raw
	(unfiltered) stream data.

2010-08-08 Jay Berkenbilt <ejb@ql.org>

	* 2.2.rc1: release

2010-08-05 Jay Berkenbilt <ejb@ql.org>

	* Add QPDFObjectHandle::addPageContents, a convenience routine for
	appending or prepending new streams to a page's content streams.
	The "pdf-double-page-size" example illustrates its use.

	* Add new methods to QPDFObjectHandle: replaceStreamData and
	newStream. These methods allow users of the qpdf library to add
	new streams and to replace data of existing streams. The
	"pdf-double-page-size" and "pdf-invert-images" examples illustrate
	their use.

2010-06-06 Jay Berkenbilt <ejb@ql.org>

	* Fix memory leak for QPDF objects whose underlying PDF objects
	contain circular references. Thanks to Jian Ma
	<stronghorse@tom.com> for calling my attention to the memory leak.

2010-04-25 Jay Berkenbilt <ejb@ql.org>

	* 2.1.5: release

	* libqpdf/QPDF_encryption.cc (compute_encryption_key): remove
	restrictions on length of file identifier string. (Fixes
	qpdf-Bugs-2991412.)

2010-04-18 Jay Berkenbilt <ejb@ql.org>

	* 2.1.4: release

	* libqpdf/QPDFWriter.cc (writeLinearized): the padding calculation
	fix in 2.1.2 was applied in only one place but it was needed in
	two places since there are actually two cross reference streams in
	a linearized file. The new padding calculation is now used for
	both streams. Hopefully this should put an end to linearization
	padding problems. (Fixes qpdf-Bugs-2979219.)

2010-04-10 Jay Berkenbilt <ejb@ql.org>

	* qpdf/qpdf.cc (main): Since qpdf --check only checks syntax and
	stream encoding without doing any semantic checks, make the output
	clearer when no errors around found. This is inspired by
	qpdf-Bugs-2983225.

2010-03-27 Jay Berkenbilt <ejb@ql.org>

	* 2.1.3: release

	* libqpdf/QPDF_optimization.cc (flattenScalarReferences): Flatten
	scalar references for unreferenced objects as well as those seen
	during traversal of the file. This matters when preserving object
	streams that contain unreferenced objects with indirect scalars.
	(Fixes qpdf-Bugs-2974522.) Updated TODO with a description of a
	possibly better fix involving removal of flattenScalarReferences.

	* libqpdf/Pl_AES_PDF.cc (finish): Don't complain if an AES input
	buffer is not a multiple of 16 bytes. Instead, just pad with
	nulls and hope for the best. PDF files have been encountered "in
	the wild" that contain AES buffers that aren't a multiple of 16
	bytes.

2010-01-24 Jay Berkenbilt <ejb@ql.org>

	* 2.1.2: release

	* libqpdf/QPDFWriter.cc: fix logic error in padding calculation.
	When writing linearized files with cross reference streams, the
	padding calculation failed to take differences in sizes of
	compressed data between pass 1 and pass 2 into consideration.

2009-12-14 Jay Berkenbilt <ejb@ql.org>

	* 2.1.1: release

	* qpdf/qtest/qpdf.test: improve test for acroread to make sure it
	actually works and is not just present in the path.

2009-12-13 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/qpdf/Pl_AES_PDF.hh: include <stdint.h>, if available, so
	we have valid definitions of uint32_t.

2009-10-30 Jay Berkenbilt <ejb@ql.org>

	* 2.1: release

	* libqpdf/QPDF.cc: be more forgiving of extraneous whitespace in
	the xref table and while recovering from error conditions.

2009-10-26 Jay Berkenbilt <ejb@ql.org>

	* Work around failure of PCRE test case; this test case exercises
	an aspect of PCRE that qpdf does not use, and the test fails with
	the version of PCRE on Red Hat Enterprise Linux 5, so we ignore
	failure on this particular test case.

	* Fix RPM .spec file to include "C" examples

2009-10-24 Jay Berkenbilt <ejb@ql.org>

	* 2.1.rc1: release

	* Provide interfaces for getting qpdf's own version number

2009-10-19 Jay Berkenbilt <ejb@ql.org>

	* include/qpdf/QPDF.hh (QPDF): getWarnings now returns a list of
	QPDFExc rather than a list of strings. This way, warnings may be
	inspected in more detail.

	* Include information about the last object read in most error
	messages. Most of the time, this will provide a good hint as to
	which object contains the error, but it's possible that the last
	object read may not necessarily be the one that has the error if
	the erroneous object was previously read and cached.

2009-10-18 Jay Berkenbilt <ejb@ql.org>

	* If forcing version, disable object stream creation and/or
	encryption if previous specifications are incompatible with new
	version. It is still possible that PDF content, compression
	schemes, etc., may be incompatible with the new version, but at
	least this way, older viewers will at least have a chance.

	* libqpdf/QPDFWriter.cc (unparseObject): avoid compressing
	Metadata streams if possible.

2009-10-13 Jay Berkenbilt <ejb@ql.org>

	* Upgrade embedded qtest to version 1.4, which allows the test
	suite to be run in Windows with MSYS and ActiveState Perl rather
	than requiring Cygwin perl.

2009-10-04 Jay Berkenbilt <ejb@ql.org>

	* Implement support AES encrypt and crypt filters. Implementation
	is not fully tested due to lack of test data but has been tested
	for several cases.

2009-10-04 Jay Berkenbilt <ejb@ql.org>

	* Add methods to QPDFWriter and corresponding command line
	arguments to qpdf to set the minimum output PDF version and also
	to force the version to a particular value.

	* libqpdf/QPDF.cc (processXRefStream): warn and ignore extra xref
	stream entries when stream is larger than reported size. This
	used to be a fatal error. (Fixes qpdf-Bugs-2872265.)

2009-09-27 Jay Berkenbilt <ejb@ql.org>

	* Add several methods to query permissions controlled by the
	encryption dictionary. Note that qpdf does not enforce these
	permissions even though it allows the user to query them.

	* The function QPDF::getUserPassword returned the user password
	with the required padding as specified by the PDF specification.
	This is seldom useful to users. This function has been replaced
	by QPDF::getPaddedUserPassword. Call the new
	QPDF::getTrimmedUserPassword to retreive the user password in a
	human-readable format.

	* qpdf/qpdf.cc (main): qpdf --check now prints the PDF version
	number in addition to its other output.

2009-09-26 Jay Berkenbilt <ejb@ql.org>

	* Removed all references to QEXC; now using std::runtime_error and
	std::logic_error and their subclasses for all exceptions.

2009-05-03 Jay Berkenbilt <ejb@ql.org>

	* 2.0.6: release

	* libqpdf/QPDF_Stream.cc (filterable): ignore /DecodeParms if it's
	not a type we recognize. (Fixes qpdf-Bugs-2779746.)

2009-03-10 Jay Berkenbilt <ejb@ql.org>

	* 2.0.5: release

2009-03-09 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/Pl_LZWDecoder.cc: adjust LZWDecoder full table
	detection, now having been able to adequately test boundary
	conditions both and with and without early code change. Also
	compared implementation with other LZW decoders.

2009-03-08 Jay Berkenbilt <ejb@ql.org>

	* qpdf/fix-qdf (write_ostream): Adjust offsets while writing
	object streams to account for changes in the length of the
	dictionary and offset tables.

	* qpdf/qpdf.cc (main): In check mode, in addition to checking
	structure of file, attempt to decode all stream data.

	* libqpdf/QPDFWriter.cc (QPDFWriter::writeObject): In QDF mode,
	write a comment to the QDF file before each object that indicates
	the object ID of the corresponding object from the original file.
	Add --no-original-object-ids flag to qpdf and
	setSuppressOriginalObjectIDs() method to QPDFWriter to turn this
	behavior off.

	* libqpdf/QPDF.cc (QPDF::pipeStreamData): Issue a warning instead
	of failing if there is a problem found while decoding stream.

	* qpdf/qpdf.cc: Exit with a status of 3 if warnings were found
	regardless of what mode we're in.

2009-02-21 Jay Berkenbilt <ejb@ql.org>

	* 2.0.4: release

2009-02-20 Jay Berkenbilt <ejb@ql.org>

	* Fix many typos in comments and strings.

	* qpdf/qpdf.cc: in --check mode, if there are warnings but no
	errors, exit with a status of 3.

	* libqpdf/QPDF.cc (QPDF::insertXrefEntry): when recovering the
	cross-reference table, have objects we encounter later in the file
	supersede those we found earlier. This improves the chances of
	being able to recover appended files with damaged cross-reference
	tables.

2009-02-19 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/Pl_LZWDecoder.cc: correct logic error for previously
	untested case of running the LZW decoder without the "early code
	change" flag. Thanks to a bug report from "Atom Smasher", I
	finally was able to obtain an input stream compressed in this way.

2009-02-15 Jay Berkenbilt <ejb@ql.org>

	* 2.0.3: release

2008-12-11 Jay Berkenbilt <ejb@ql.org>

	* qpdf/qpdf.cc (main): Accept -help and -version as well as --help
	and --version

2008-11-23 Jay Berkenbilt <ejb@ql.org>

	* Include stdio.h in a few files for proper compilation with (yet
	to be released) gcc 4.4

	* updated embedded qtest to version 1.3

	* libqpdf/QPDF_String.cc (QPDF_String::getUTF8Val): handle
	UTF-16BE properly rather than just treating the string as a string
	of 16-bit characters.

2008-06-30 Jay Berkenbilt <ejb@ql.org>

	* 2.0.2: release

	* updated embedded qtest to version 1.2 (includes previous
	changes)

2008-06-07 Jay Berkenbilt <ejb@ql.org>

	* qpdf/qtest/qpdf/diff-encrypted: change == to = so that the test
	suite passes when /bin/sh is not bash

2008-05-07 Jay Berkenbilt <ejb@ql.org>

	* qtest/bin/qtest-driver (run_test): increase timeout for qtest to
	be more tolerant of slow machines

2008-05-06 Jay Berkenbilt <ejb@ql.org>

	* 2.0.1: release

	* make/rules.mk: fix logic with .dep generation for .lo files so
	that dependencies work properly with libtool

2008-05-05 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/qpdf/MD5.hh: fix header to be 64-bit clean

	* configure.ac: add tests for sized integer types

2008-05-04 Jay Berkenbilt <ejb@ql.org>

	* libqpdf/QPDF_encryption.cc: do not assume size_t is unsigned int

	* qpdf/qtest/qpdf.test: removed locale-specific tests. These were
	really to check bugs in perl 5.8.0 and are obsolete now. They
	also make the test suite fail in some environments that don't have
	all the locales fully configured.

	* various: updated several files for gcc 4.3 by adding missing
	includes (string.h, stdlib.h)

2008-04-26 Jay Berkenbilt <ejb@ql.org>

	* 2.0: initial public release

@unixroot/usr/share/doc/qpdf-libs-6.0.0/README
This is the QPDF package. Information about it can be found at
http://qpdf.sourceforge.net. The source code repository is hosted
at github: https://github.com/qpdf/qpdf.

QPDF is copyright (c) 2005-2015 Jay Berkenbilt

This software may be distributed under the terms of version 2 of the
Artistic License which may be found in the source distribution as
"Artistic-2.0". It is provided "as is" without express or implied
warranty.

Prerequisites
=============

QPDF depends on external libraries "zlib" and "pcre". These are part
of virtually all Linux distributions and are readily available;
download information appears in the documentation. For Windows, you
can download pre-built binary versions of those libraries for some
compilers; see README-windows.txt for additional details.

QPDF requires a C++ compiler that works with STL. Your compiler must
also support "long long". Almost all modern compilers do. If you are
trying to port qpdf to a compiler that doesn't support long long, you
could change all occurrences of "long long" to "long" in the source
code, noting that this would break binary compatibility with other
builds of qpdf. Doing so would certainly prevent qpdf from working
with files larger than 2 GB, but remaining functionality would most
likely work fine. If you built qpdf this way and it passed its test
suite with large file support disabled, you could be confident that
you had an otherwise working qpdf.

Licensing terms of embedded software
====================================

QPDF makes use of zlib and pcre for its functionality. These packages
can be downloaded separately from their own download locations, or
they can be downloaded in the external-libs area of the qpdf download
site.

The Rijndael encryption implementation used as the basis for AES
encryption and decryption support comes from Philip J. Erdelsky's
public domain implementation. The files libqpdf/rijndael.cc and
libqpdf/qpdf/rijndael.h remain in the public domain. They were
obtained from

 http://www.efgh.com/software/rijndael.htm
 http://www.efgh.com/software/rijndael.txt

The embedded sha2 code comes from sphlib 3.0

 http://www.saphir2.com/sphlib/

That code has the following license:

 Copyright (c) 2007-2011 Projet RNRT SAPHIR

 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:

 The above copyright notice and this permission notice shall be included
 in all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Building from a pristine checkout
=================================

When building qpdf from a pristine checkout from version control,
documentation and automatically generated files are not present.
Building on Windows from a pristine checkout is not guaranteed to work
because of issues running autoconf; see README-windows.txt for how to
handle this. For UNIX and UNIX-like systems, you must have some
addditional tools installed to build from the source repository. To
do this, you should run

./autogen.sh
./configure --enable-doc-maintenance
make
make install

If you don't have Apache fop and the docbook stylesheets installed,
you won't be able to build documentation. You can omit
--enable-doc-maintenance and produce working qpdf software that passes
its test suite, but make install will fail because the documentation
files won't exist. Depending on your purposes, you can either work
around this or grab the docs from a source distribution.

Building from source distribution on UNIX/Linux
===

For UNIX and UNIX-like systems, you can usually get by with just

./configure
make
make install

Packagers may set DESTDIR, in which case make install will install
inside of DESTDIR, as is customary with many packages. For more
detailed general information, see the "INSTALL" file in this
directory. If you are already accustomed to building and installing
software that uses autoconf, there's nothing new for you in the
INSTALL file.

Building on Windows
===================

QPDF is known to build and pass its test suite with mingw (latest
version tested: gcc 4.6.2), mingw64 (latest version tested: 4.7.0) and
Microsoft Visual C++ 2010, both 32-bit and 64-bit versions. MSYS plus
ActiveState Perl is required to build as well in order to get make
and other related tools. See README-windows.txt for details on how to
build under Windows, see README-windows.txt.

Additional Notes on Build
=========================

QPDF's build system, inspired by abuild (http://www.abuild.org), can
optionally use its own built-in rules rather than using libtool and
obeying the compiler specified with configure. This can be enabled by
passing --with-buildrules=buildrules where buildrules corresponds to
one of the .mk files (other than rules.mk) in the make directory.
This should never be necessary on a UNIX system, but may be necessary
on a Windows system. See README-windows.txt for details. There is a
gcc-linux.mk file enable "gcc-linux" build rules, but it is intended
to help test the build system; Linux users should build with the
"libtools" rules, which are enabled by default.

The QPDF package provides some executables and a software library. A
user's manual can be found in the "doc" directory. The docbook
sources to the user's manual can be found in the "manual" directory.

The software library is just libqpdf, and all the header files are in
the qpdf subdirectory. If you link statically with -lqpdf, then you
will also need to link with -lpcre and -lz. The shared qpdf library
is linked with -lpcre and -lz, and none of qpdf's public header files
directly include files from pcre or libz, so in many cases, qpdf's
development files are self contained.

To learn about using the library, please read comments in the header
files in include/qpdf, especially QPDF.hh, QPDFObjectHandle.hh, and
QPDFWriter.hh. You can also study the code of qpdf/qpdf.cc, which
exercises most of the public interface. There are additional example
programs in the examples directory. Reading all the source files in
the qpdf directory (including the qpdf command-line tool and some test
drivers) along with the code in the examples directory will give you a
complete picture of every aspect of the public interface.

Additional Notes on Test Suite
==============================

By default, slow tests are disabled. Slow tests include image
comparison tests and large file tests. Image comparison tests can be
enabled by passing --enable-test-compare-images to ./configure. This
was on by default in qpdf versions prior to 3.0, but is now off by
default. Large file tests can be enabled by passing
--with-large-file-test-path=path to ./configure or by setting the
QPDF_LARGE_FILE_TEST_PATH environment variable. Run ./configure
--help for additional options. The test suite provides nearly full
coverage even without these tests. Unless you are making deep changes
to the library that would impact the contents of the generated PDF
files or testing this on a new platform for the first time, there is
no real reason to run these tests. If you're just running the test
suite to make sure that qpdf works for your build, the default tests
are adequate. The configure rules for these tests do nothing other
than setting variables in autoconf.mk, so you can feel free to turn
these on and off directly in autoconf.mk rather than rerunning
configure.

If you are packaging qpdf for a distribution and preparing a build
that is run by an autobuilder, you may want to add the
--enable-show-failed-test-output to configure options. This way, if
the test suite fails, test failure detail will be included in the
build output. Otherwise, you will have to have access to the
qtest.log file from the build to view test failures. The debian
packages for qpdf enable this option, for example.

Random Number Generation
========================

By default, when the qpdf detects either the Windows cryptography API
or the existence of /dev/urandom, /dev/arandom, or /dev/random, it
uses them to generate cryptography secure random numbers. If none of
these conditions are true, the build will fail with an error. This
behavior can be modified in several ways:

 * If you configure with --disable-os-secure-random or define
 SKIP_OS_SECURE_RANDOM, qpdf will not attempt to use Windows
 cryptography or the random device. You must either supply your own
 random data provider or allow use of insecure random numbers.

 * If you configure qpdf with the --enable-insecure-random option or
 define USE_INSECURE_RANDOM, qpdf will try insecure random numbers
 if OS-provided secure random numbers are disabled. This is not a
 fallback. In order for insecure random numbers to be used, you
 must also disable OS secure random numbers since, otherwise,
 failure to find OS secure random numbers is a compile error. The
 insecure random number source is stdlib's random() or rand() calls.
 These random numbers are not cryptography secure, but the qpdf
 library is fully functional using them. Using non-secure random
 numbers means that it's easier in some cases to guess encryption
 keys. If you're not generating encrypted files, there's no
 advantage to using secure random numbers.

 * In all cases, you may supply your own random data provider. To do
 this, derive a class from qpdf/RandomDataProvider (since 5.1.0) and
 call QUtil::setRandomDataProvider before you create any QPDF
 objects. If you supply your own random data provider, it will
 always be used even if support for one of the other random data
 providers is compiled in. If you wish to avoid any possibility of
 your build of qpdf from using anything but a user-supplied random
 data provider, you can define SKIP_OS_SECURE_RANDOM and not
 USE_INSECURE_RANDOM. In this case, qpdf will throw a runtime error
 if any attempt is made to generate random numbers and no random
 data provider has been supplied.

If you are building qpdf on a platform that qpdf doesn't know how to
generate secure random numbers on, a patch would be welcome.

@unixroot/usr/share/doc/qpdf-libs-6.0.0/TODO
Small, command-line tool only enhancements to do soon
===

 * Handle input file = output file as a special case. See issue 29.
 Behavior: detect if output file is the same as one of the input
 files. If so, refuse to operate unless --allow-overwrite is
 specified. In that case, write to a temporary file and, if there
 are no errors or warnings, rename the temporary output file over
 the input file. If rename fails, delete the temporary file.

 * Consider providing alternative methods for specifying passwords.
 The methods should be general enough to use for both encryption and
 decryption passwords. Example methods could be reading the password
 from a file, a file descriptor, or prompting. Prompting should
 never be done with being specifically requested though; we don't
 want to create a situation where running qpdf might block waiting
 for input where it previously did not. Test case: encrypt an
 encrypted file with the output file having different user/owner
 passwords. Make sure we have a predictable way to read all three
 passwords (input, output user, output owner). Maybe we have
 something like --password-source=<method>:<which>,... where method could
 be file=/path, fd=n, or prompt and which could be one of input,
 user, owner. If a password source is provided for input, it takes
 precedence over --password if specified later on the command line.
 If a password source is specified for output passwords, the
 corresponding passwords must be '-'. If more than one password is
 read from the same source, passwords are newline separated.
 Trailing newlines are ignored. Example:

 qpdf --password-source=fd=3:input,owner a.pdf b.pdf

 would read two lines from file descriptor 3. The first would the
 password for reading a.pdf, and the second would be the owner
 password for b.pdf. The encryption arguments would specify the
 actual user password for b.pdf and - as the owner password.

 qpdf --password-source=file=/tmp/a:input --password=source=prompt:user,owner

 would read the input file from /tmp/a and would prompt twice: one
 for the user password and once for the owner password.

 * Consider adding "uninstall" target to makefile. It should only
 uninstall what it installed, which means that you must run
 uninstall from the version you ran install with. It would only be
 supported for the toolchains that support the install target
 (libtool).

6.1.0
=====

 * Add method to push inheritable resources to a single page by
 walking up and copying without overwrite. Above logic will also be
 sufficient to fix the limitation in
 QPDFObjectHandle::getPageImages(). Maybe add a method to get the
 effective resources for a page without modifying the page and then
 implement both changes in terms of that method.

 * Provide an option for QPDFWriter to preserve unreferenced objects
 when writing out a file.

 * Look at all the exceptions and error conditions in QPDF_stream and
 figure out which ones should be converted to warnings and treating
 the stream as not filterable.

 * Support user-pluggable stream filters. This would enable external
 code to provide interpretation for filters that are missing from
 qpdf. Make it possible for user-provided fitlers to override
 built-in filters. Make sure that the pluggable filters can be
 prioritized so that we can poll all registered filters to see
 whether they are capable of filtering a particular stream.

 * If possible, consider adding RLE, CCITT3, CCITT4, or any other easy
 filters. For some reference code that we probably can't use but
 may be handy anyway, see
 http://partners.adobe.com/public/developer/ps/sdk/index_archive.html

 * If possible, support the following types of broken files:

 - Files that lack %%EOF at the end but otherwise have a valid
 startxref near the end

 - Files that have no whitespace token after "endobj" such that
 endobj collides with the start of the next object

 - Files with individual corrupted streams. Just leave the streams
 unfiltered after giving a warning, or maybe do something else
 like applying as many of the filters as possible, etc.
 QPDFWriter can have some kind of retry mechanism on streams
 where filtering fails after filterable returns true.

 - Files whose PDF header is malformed, perhaps with no version
 number (as literally %PDF-a.b). Maybe keep track of features to
 try to infer a version based on encryption formats and object
 streams.

 - For really hard errors like corrupted streams where there is
 virtually guaranteed to be loss, maybe require an additional
 option to tell qpdf that it's okay to continue and treat those
 as warnings. Probably need separate options for each type of
 error plus a generic tryReallyHard kind of method that enables
 them all. Then the qpdf command-line tool can have a single
 flag that enables all supported aggressive recovery techniques.

 - See ../misc/broken-files

General
=======

 * Implement automated testing for binary compatibility and add to
 release checklist.

 * Figure out how to find Visual Studio in Windows registry and see if
 I can get it to work with make so I can simplify creation of
 Windows releases.

 * Provide support in QPDFWriter for writing incremental updates.
 Provide support in qpdf for preserving incremental updates. The
 goal should be that QDF mode should be fully functional for files
 with incremental updates including fix_qdf.

 Note that there's nothing that says an indirect object in one
 update can't refer to an object that doesn't appear until a later
 update. This means that QPDF has to treat indirect null objects
 differently from how it does now. QPDF drops indirect null objects
 that appear as members of arrays or dictionaries. For arrays, it's
 handled in QPDFWriter where we make indirect nulls direct. This is
 in a single if block, and nothing else in the code cares about it.
 We could just remove that if block and not break anything except a
 few test cases that exercise the current behavior. For
 dictionaries, it's more complicated. In this case,
 QPDF_Dictionary::getKeys() ignores all keys with null values, and
 hasKey() returns false for keys that have null values. We would
 probably want to make QPDF_Dictionary able to handle the special
 case of keys that are indirect nulls and basically never have it
 drop any keys that are indirect objects.

 If we make a change to have qpdf preserve indirect references to
 null objects, we have to note this in ChangeLog and in the release
 notes since this will change output files. We did this before when
 we stopped flattening scalar references, so this is probably not a
 big deal. We also have to make sure that the testing for this
 handles non-trivial cases of the targets of indirect nulls being
 replaced by real objects in an update. I'm not sure how this plays
 with linearization, if at all. For cases where incremental updates
 are not being preserved as incremental updates and where the data
 is being folded in (as is always the case with qpdf now), none of
 this should make any difference in the actual semantics of the
 files.

 * When decrypting files with /R=6, hash_V5 is called more than once
 with the same inputs. Caching the results or refactoring to reduce
 the number of identical calls could improve performance for
 workloads that involve processing large numbers of small files.

 * Consider providing a Windows installer for qpdf using NSIS.

 * Consider adding a method to balance the pages tree. It would call
 pushInheritedAttributesToPage, construct a pages tree from scratch,
 and replace the /Pages key of the root dictionary with the new
 tree.

 * Secure random number generation could be made more efficient by
 using a local static to ensure a single random device or crypt
 provider as long as this can be done in a thread-safe fashion. In
 the initial implementation, this is being skipped to avoid having
 to add any dependencies on threading libraries.

 * Study what's required to support savable forms that can be saved by
 Adobe Reader. Does this require actually signing the document with
 an Adobe private key? Search for "Digital signatures" in the PDF
 spec, and look at ~/Q/pdf-collection/form-with-full-save.pdf, which
 came from Adobe's example site.

 * Consider the possibility of doing something locale-aware to support
 non-ASCII passwords. Update documentation if this is done.
 Consider implementing full Unicode password algorithms from newer
 encryption formats.

 * Consider impact of article threads on page splitting/merging.
 Subramanyam provided a test file; see ../misc/article-threads.pdf.
 Email Q-Count: 431864 from 2009-11-03. Other things to consider:
 outlines, page labels, thumbnails, zones. There are probably
 others.

 * See if we can avoid preserving unreferenced objects in object
 streams even when preserving the object streams.

 * For debugging linearization bugs, consider adding an option to save
 pass 1 of linearization. This code is sufficient. Change the
 interface to allow specification of a pass1 file, which would
 change the behavior as in this patch.

Index: QPDFWriter.cc
===
--- QPDFWriter.cc	(revision 932)
+++ QPDFWriter.cc	(working copy)
@@ -1965,11 +1965,15 @@

 // Write file in two passes. Part numbers refer to PDF spec 1.4.

+ FILE* XXX = 0;
 for (int pass = 1; pass <= 2; ++pass)
 {
 	if (pass == 1)
 	{
-	 pushDiscardFilter();
+//	 pushDiscardFilter();
+	 XXX = QUtil::safe_fopen("/tmp/pass1.pdf", "w");
+	 pushPipeline(new Pl_StdioFile("pass1", XXX));
+	 activatePipelineStack();
 	}

 	// Part 1: header
@@ -2204,6 +2208,8 @@

 	 // Restore hint offset
 	 this->xref[hint_id] = QPDFXRefEntry(1, hint_offset, 0);
+	 fclose(XXX);
+	 XXX = 0;
 	}
 }
 }

 * Provide APIs for embedded files. See *attachments*.pdf in test
 suite. The private method findAttachmentStreams finds at least
 cases for modern versions of Adobe Reader (>= 1.7, maybe earlier).
 PDF Reference 1.7 section 3.10, "File Specifications", discusses
 this.

 A sourceforge user asks if qpdf can handle extracting and embedded
 resources and references these tools, which may be useful as a
 reference.

 http://multivalent.sourceforge.net/Tools/pdf/Extract.html
 http://multivalent.sourceforge.net/Tools/pdf/Embed.html

 * The description of Crypt filters is unclear with respect to how to
 use them to override /StmF for specific streams. I'm not sure
 whether qpdf will do the right thing for any specific individual
 streams that might have crypt filters, but I believe it does based
 on my testing of a limited subset. The specification seems to imply
 that only embedded file streams and metadata streams can have crypt
 filters, and there are already special cases in the code to handle
 those. Most likely, it won't be a problem, but someday someone may
 find a file that qpdf doesn't work on because of crypt filters.
 There is an example in the spec of using a crypt filter on a
 metadata stream.

 For now, we notice /Crypt filters and decode parameters consistent
 with the example in the PDF specification, and the right thing
 happens for metadata filters that happen to be uncompressed or
 otherwise compressed in a way we can filter. This should handle
 all normal cases, but it's more or less just a guess since I don't
 have any test files that actually use stream-specific crypt filters
 in them.

 * The second xref stream for linearized files has to be padded only
 because we need file_size as computed in pass 1 to be accurate. If
 we were not allowing writing to a pipe, we could seek back to the
 beginning and fill in the value of /L in the linearization
 dictionary as an optimization to alleviate the need for this
 padding. Doing so would require us to pad the /L value
 individually and also to save the file descriptor and determine
 whether it's seekable. This is probably not worth bothering with.

 * The whole xref handling code in the QPDF object allows the same
 object with more than one generation to coexist, but a lot of logic
 assumes this isn't the case. Anything that creates mappings only
 with the object number and not the generation is this way,
 including most of the interaction between QPDFWriter and QPDF. If
 we wanted to allow the same object with more than one generation to
 coexist, which I'm not sure is allowed, we could fix this by
 changing xref_table. Alternatively, we could detect and disallow
 that case. In fact, it appears that Adobe reader and other PDF
 viewing software silently ignores objects of this type, so this is
 probably not a big deal.

 * Pl_PNGFilter is only partially implemented. If we ever decoded
 images, we'd have to finish implementing it along with the other
 filter decode parameters and types. For just handling xref
 streams, there's really no need as it wouldn't make sense to use
 any kind of predictor other than 12 (PNG UP filter).

 * If we ever want to have check mode check the integrity of the free
 list, this can be done by looking at the code from prior to the
 object stream support of 4/5/2008. It's in an if (0) block and
 there's a comment about it. There's also something about it in
 qpdf.test -- search for "free table". On the other hand, the value
 of doing this seems very low since no viewer seems to care, so it's
 probably not worth it.

 * QPDFObjectHandle::getPageImages() doesn't notice images in
 inherited resource dictionaries. See comments in that function.

 * Based on an idea suggested by user "Atom Smasher", consider
 providing some mechanism to recover earlier versions of a file
 embedded prior to appended sections.

 * From a suggestion in bug 3152169, consider having an option to
 re-encode inline images with an ASCII encoding.

 * From github issue 2, provide more in-depth output for examining
 hint stream contents.

@unixroot/usr/share/man/man1/fix-qdf.1
\" This file is not processed by autoconf, but rather by build.mk in
\" the manual directory.
.TH FIX-QDF "1" "April 2008" "fix-qdf version 6.0.0" "User Commands"
.SH NAME
fix-qdf \- repair PDF files in QDF form after editing
.SH SYNOPSIS
.B qpdf
< \fIinfilename\fR > \fIoutfilename\fR
.SH DESCRIPTION
The fix-qdf program is part of the qpdf package.
.PP
The fix-qdf program reads a PDF file in QDF form and writes out
the same file with stream lengths, cross-reference table entries, and
object stream offset tables regenerated.
.PP
For details about fix-qdf and about PDF files in QDF mode, please see
the qpdf manual, which can be found in /@unixroot/usr/share/doc/qpdf/qpdf-manual.html or
/@unixroot/usr/share/doc/qpdf/qpdf-manual.pdf.

@unixroot/usr/share/man/man1/qpdf.1
\" This file is not processed by autoconf, but rather by build.mk in
\" the manual directory.
.TH QPDF "1" "April 2008" "qpdf version 6.0.0" "User Commands"
.SH NAME
qpdf \- PDF transformation software
.SH SYNOPSIS
.B qpdf
[\fIoptions \fR] \fIinfilename [outfilename]\fR
.SH DESCRIPTION
The qpdf program is used to convert one PDF file to another equivalent
PDF file. It is capable of performing a variety of transformations
such as linearization (also known as web optimization or fast web
viewing), encryption, and decryption of PDF files. It also has many
options for inspecting or checking PDF files, some of which are
useful primarily to PDF developers.
.PP
For a summary of qpdf's options, please run
\fBqpdf --help\fR. A complete manual can be found in
/@unixroot/usr/share/doc/qpdf/qpdf-manual.html or /@unixroot/usr/share/doc/qpdf/qpdf-manual.pdf.

@unixroot/usr/share/man/man1/zlib-flate.1
\" This file is not processed by autoconf, but rather by build.mk in
\" the manual directory.
.TH ZLIB-FLATE "1" "April 2008" "zlib-flate from qpdf version 6.0.0" "User Commands"
.SH NAME
zlib-flate \- raw zlib compression program
.SH SYNOPSIS
.B zlib-flate
\fI-compress | -uncompress\fR
.SH DESCRIPTION
The zlib-flate program is part of the qpdf package.
.PP
The zlib-flate program reads from standard input and writes to
standard output either compressing or uncompressing its input using raw
zlib compression. It can be used to uncompress or compress raw PDF
streams or other data that is compressed with raw zlib compression.
This program is provided primarily as a debugging tool, though it
could be used for other purposes, such as being called from a script
that creates simple PDF files.
.PP
This program should not be used as a general purpose compression
tool. Use something like gzip(1) instead.
.PP
For details about qpdf, please see the qpdf manual, which can be found
in /@unixroot/usr/share/doc/qpdf/qpdf-manual.html or /@unixroot/usr/share/doc/qpdf/qpdf-manual.pdf.
.SH "SEE ALSO"
qpdf(1), gzip(1)

