NASM - The Netwide Assembler

version 2.13.03

© 1996-2017 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1:Introduction L 17
L1WhatIsNASM?. . . . o e e e e e e e e e e e 17
1.1.1License Conditions e e 17
Chapter 2: Running NASM o o e e 19
2.1NASM Command-LineSyntax. L e 19
2.1.1 The —o Option: Specifying the Output FileName 19
2.1.2 The —f Option: Specifying the Output FileFormat 20
2.1.3The -1 Option: Generating a ListingFile 20
2.1.4The —M Option: Generate Makefile Dependencies. 20
2.1.5The —MG Option: Generate Makefile Dependencies. 20
2.1.6 The —MF Option: Set Makefile DependencyFile. 20
2.1.7 The —MD Option: Assemble and Generate Dependencies 20
2.1.8 The —MT Option: Dependency TargetName 21
2.1.9 The —-MQ Option: Dependency Target Name (Quoted) 21
2.1.10 The -MP Option: Emit phonytargets 21
2.1.11 The —-MW Option: Watcom Make quotingstyle. 21
2.1.12 The —F Option: Selecting a Debug Information Format 21
2.1.13 The —g Option: Enabling Debug Information. 21
2.1.14The —X Option: Selecting an Error ReportingFormat 21
2.1.15The -Z Option: Send ErrorstoaFile. 22
2.1.16 The -s Option: Send Errorstostdout 22
2.1.17 The —1 Option: Include File Search Directories 22
2.1.18 The -p Option: Pre-IncludeaFile. 22
2.1.19The -d Option: Pre-DefineaMacro 23
2.1.20 The —u Option: UndefineaMacro. 23
2.1.21The —-E Option: PreprocessOnly. v i i it iie e 23
2.1.22 The —a Option: Don’t Preprocess AtAll 23
2.1.23 The -0 Option: Specifying Multipass Optimization 23
2.1.24The —t Option: Enable TASM Compatibility Mode. 24
2.1.25The —~w and -W Options: Enable or Disable Assembly Warnings 24
2.1.26 The —v Option: Display VersionInfo. 25
2.1.27 The -y Option: Display Available Debug Info Formats. 25
2.1.28 The--prefixand ——postfixOptions. 26

2.1.29The --allow-64bit-code-anywhereOption. 26

2.1.30 The NASMENV EnvironmentVariable 26
2.2Quick Start for MASM USEIS v e e e e e e e e e e e e e e e e 26
22.1NASMIsCase-Sensitive. L Lo e 26
2.2.2 NASM Requires Square Brackets For Memory References. 26
2.2.3NASM Doesn’t Store Variable Types. 27
2.24NASMDoesn’t ASSUME. e e 27
2.2.5NASM Doesn’t Support MemoryModels Lo 27
2.2.6 Floating-Point Differences L 27
2.2.70ther Differences. L e 28
Chapter3: The NASM Language o v v v i i e e e e e e e e e e 29
3.1LayoutofaNASM Sourceline. L e e e 29
3.2Pseudo-Instructions L L L L e 30
3.2.1DB and Friends: Declaring InitializedData 30
3.2.2RESB and Friends: Declaring UninitializedData 30
3.2.3 INCBIN: Including External Binary Files 30
3.24EQU:DefiningConstants L. e e e 31
3.2.5 TIMES: Repeating InstructionsorData. 31
33 Effective Addresses L L e 31
34Constants oL L L e e e e e e 33
34 1NumericConstants. L. 33
34.2Character Strings. L L e e e e 33
3.43CharacterConstants L. e e e e 34
34.4StringConstants L L L e e e e e e e e e e 34
3.45UnicodeStrings L e e e e e 35
3.4.6 Floating-PointConstants. e 35
347PackedBCDConstants e e e e e 36
35EXPressionso e e e e e e 36
3.5.1 |:Bitwise OROperator. v v v i e e e 36
3.5.2 M Bitwise XOROperator oL 37
353 & Bitwise ANDOperator L 37
3.5.4<<and >>:BitShiftOperators 37
3.5.5 + and —: Addition and Subtraction Operators. 37
3.5.6 %, /,//,%and %%: Multiplication and Division 37
3.5.7UnaryOperators o e e e e e e e e e e e e e 37

36SEGandWRT e e e 37

3.7 STRICT: Inhibiting Optimization 38

3.8Critical EXpressions e e e e e e e 38
39Locallabels. e 39
Chapter4: The NASM Preprocessor v v v v v v v i e e e e e e e e e e e e e e e e e e 41
4.1Single-LineMacros e e e e e 41
4.1.1TheNormalWay:%define e 41
4.1.2Resolving%define:%xdefine. L 42
4.13MacroIndirection: %[...]. L 43
4.1.4 Concatenating Single Line Macro Tokens: %+. 43
4.1.5TheMacroNameltself: %2 and %272 i i e 43
4.1.6 Undefining Single-Line Macros: %undef. oo L. 44
4.1.7 Preprocessor Variables: %assign Lo 44
4.1.8 Defining Strings: %defstr. L 45
4.19 Defining Tokens: %deftok. L 45
4.2 String Manipulationin Macros. 45
4.2.1 Concatenating Strings: %strcat L o oo 45
422StringLength: %strlen. e 45
4.2.3 Extracting Substrings: %substr. L Lo 46
43 Multi-Line Macros: %macro. ot e e e e e e e 46
4.3.10verloading Multi-LineMacros. e 47
43.2Macro-LocalLabels L 47
433 Greedy MacroParameters e e e e 48
4.3.4Macro ParametersRange.o o o 48
4.3.5 Default Macro Parameters e e 49
4.3.6 %0: Macro ParameterCounter Lo oo 50
4.3.7%00: Label PreceedingMacro 50
4.3.8%rotate: Rotating Macro Parameters. Lo oL 50
4.3.9 Concatenating Macro Parameters oo e 51
4.3.10 Condition Codes as Macro Parameters i 52
4.3.11 Disabling Listing Expansion L e e e 52
4.3.12 Undefining Multi-Line Macros: %unmacroo 53
4.4 Conditional Assembly L 53
4.4.1%7ifdef: Testing Single-Line Macro Existence 53
4.4.2 %7 fmacro: Testing Multi-Line MacroExistence 54
4.43%ifctx:TestingtheContextStack 54
4.4.4 %1 f: Testing Arbitrary Numeric Expressions 54

445%ifidnand %ifidni:TestingExactTextIdentity 55

446%ifid,%ifnum,%ifstr:TestingTokenTypes. 55
44.7%iftoken:TestforaSingleToken o 56
4.48%ifempty: TestforEmpty Expansion o 56
4.49%ifenv: TestIf EnvironmentVariableExists. 56
4.5 PreprocessorLoOpS: Brep . . . o v o i i e e e e e e e e e e e e e e e e e 56
4.6 Source Filesand Dependencieso e 57
4.6.1%include:IncludingOtherFiles, 57
4.6.2 %pathsearch: SearchthelncludePath. 58
4.6.3%depend: Add DependentFiles 58
4.6.4%use: Include Standard MacroPackage L oo oL 58
4. 7TheContextStack. e e e 58
4.7.1%push and %pop: Creatingand RemovingContexts 59
4.7.2 Context-LocalLabels. e 59
4.7.3 Context-Local Single-LineMacros e 59
4.7.4 Context Fall-Through Lookup (deprecated) 60
475%repl:RenamingaContext L 60
4.7.6 Example Use of the Context Stack:Block IFs, 61
4.8 Stack Relative Preprocessor Directives e 62
4.8.1%argDirective. L e e e e e e e e e e e 62
48.2%stacksizeDirective e 63
4.83%LlocalDirective o i e e e 63
4.9 Reporting User-Defined Errors: %error,%warning,%fatal. 64
4.10 Other Preprocessor Directives o o i i i 64
4.10.1%lineDirective. L e e e e e 65
4.10.2%!variable: Read an EnvironmentVariable.., 65
4.11Standard Macros. e e e e e e e e e e e e e 65
411 1NASMVeErsion Macros v v v v i e e e e e e e e e e e e e e 65
4.11.2 __NASM_VERSION_ID__:NASMVersionID. 66
4.11.3 __NASM_VER__:NASMVersionstring o v v i i i 66
4114 __FILE__and __LINE__:FileNameandLineNumber. 66
4,115 __BITS__:CurrentBITSMode. i ittt et it 66
4.11.6 __OUTPUT_FORMAT__:CurrentQutputFormat. 66
4.11.7Assembly Dateand Time Macros i e 67
4.11.8 __USE_package__:PackagelIncludeTest 67

411.9 __PASS__:AssemblyPass e 67

4.11.10 STRUC and ENDSTRUC: Declaring Structure Data Types. 68

4.11.11 ISTRUC, AT and IEND: Declaring Instances of Structures. 69
4.11.12 ALIGN and ALIGNB: Data Alignment oo 69
4.11.13 SECTALIGN: SectionAlignment. it 70
Chapter 5: Standard MacroPackages i 71
5.1altreg:Alternate RegisterNames e 71
52smartalign:Smart ALIGNMacro o v i v i vt it e e e 71
5.3 fp:Floating-pointmacros L 72
544func:integerfunctions L 72
5.4.1Integerlogarithms L 72
Chapter 6: Assembler Directives L e e e e e e 73
6.1 BITS: Specifying Target ProcessorMode 73
6.1.1USE16 & USE32: AliasesforBITS i 74
6.2 DEFAULT: Changethe assemblerdefaults 74
6.2.1 REL & ABS: RIP-relativeaddressing 74
6.22BND &NOBND: BND prefix o i e e e e 74
6.3 SECTION or SEGMENT: Changing and Defining Sections 74
6.3.1The __SECT__MaCIO v v v v i i et e e e e e e e e s s s s 74
6.4 ABSOLUTE: Defining Absolute Labels., 75
6.5 EXTERN: Importing Symbols from OtherModules. 76
6.6 GLOBAL: Exporting Symbolsto OtherModules 76
6.7 COMMON: DefiningCommon DataAreas.« . v v v v v i v i e e e e e e e 7
6.8 CPU: Defining CPUDependencies i i i it i e 77
6.9 FLOAT: Handling of floating—pointconstants. 78
6.10 [WARNING]: Enableordisablewarnings 78
Chapter 7: Output Formats. e e e e e e e e e e 79
7.1bin:Flat-Form Binary Output 79
7.1.10RG: Binary File Program Origin i 79
7.1.2 bin Extensionstothe SECTION Directive 79
7.1.3 Multisection Support forthebinFormat. 80
T.14AMapFiles. o o e 80
7.2h9th:IntelHexOutput. L o e 80
7.3srec:MotorolaS-RecordsQutput e 80
7.4 0bj: Microsoft OMF ObjectFiles. e 81
7.4.1 obj Extensions to the SEGMENT Directive 81
7.4.2 GROUP: Defining Groupsof Segments Lo 82

7.4.3 UPPERCASE: Disabling Case SensitivityinOutput 83

7.4.4 IMPORT: Importing DLLSymbols. 83
7.4.5 EXPORT: Exporting DLLSymbols. 83
7.4.6 . .start:Definingthe ProgramEntryPoint. 84
7.4.7 obj Extensions to the EXTERN Directive. 84
7.4.8 obj Extensions to the COMMON Directive. o v 84
7.4.9 Embedded File Dependency Information. L L. 85
7.5win32: Microsoft Win32 ObjectFiles 85
7.5.1win32 Extensions to the SECTION Directive 85
7.5.2win32: Safe Structured Exception Handling. 86
7.5.3 Debugging formatsforWindows Lo Lo 87
7.6 win64: Microsoft Win64 ObjectFiles 87
7.6.1win64: Writing Position—-IndependentCode 87
7.6.2win64: Structured Exception Handling oL 88
7.7coff:CommonObjectFileFormat 91
7.8macho32 and macho64: Mach ObjectFileFormat 91
7.8.1 macho extensionstothe SECTION Directive 91
7.8.2 Thread Local Storage in Mach-0: macho special symbolsandWRT 92
7.8.3 macho specfic directive subsections_via_symbols. 92
7.8.4macho specficdirectiveno_dead_strip L o L. 92
7.9elf32,elf64, elfx32: Executable and Linkable Format ObjectFiles 92
7.9.1ELF specificdirectiveosabi 92
7.9.2 elf extensionstothe SECTION D Directive 93
7.9.3 Position-Independent Code: macho Special SymbolsandWRT 93
7.9.4 Thread Local Storage in ELF: e Lf Special SymbolsandWRT 94
7.9.5 elf Extensions to the GLOBAL Directive. 94
7.9.6 el f Extensions to the COMMON Directive 95
7.9.716-bitcodeand ELF e 95
7.9.8Debugformatsand ELF 95
7.10 aout:Linuxa.outObjectFiles. L 95
7.11 aoutb: NetBSD/FreeBSD/OpenBSD a.out ObjectFiles. 95
7.12 as86: Minix/Linux as86 ObjectFiles 96
7.13 rdf: Relocatable Dynamic Object FileFormat 96
7.13.1 Requiring a Library: The LIBRARY Directive 96
7.13.2 Specifying a Module Name: The MODULE Directive 96

7.13.3 rdf Extensions tothe GLOBAL Directive v v v v v v v 96

7.13.4 rdf Extensionstothe EXTERN Directive v .. 97

7.14dbg:DebuggingFormat L. 97
Chapter 8: Writing 16-bit Code (DOS, Windows 3/3.1) i v i v i it et e 99
8.1Producing .EXEFiles e 99
8.1.1 Using the obj Format To Generate .EXEFiles. 99
8.1.2 Using the bin Format To Generate .EXEFiles. 100
8.2Producing .COMFiles L e 101
8.2.1 Using the bin Format To Generate .COMFiles. 101
8.2.2 Using the obj Format To Generate .COMFiles. 101
83Producing .SYSFiles. e 102
8.4 Interfacingto 16-bit CPrograms L 102
8.4.1External SymbolNames 102
8.4.2MemoryModels. 103
8.4.3 Function Definitionsand FunctionCalls 104
8.4.4 AccessingDataltems. L L. e e e e 106
8.4.5 c16.mac: Helper Macros for the 16-bit CInterface 106
8.5 Interfacing to Borland Pascal Programs.. L oo 107
8.5.1ThePascal CallingConvention it 108
8.5.2 Borland Pascal Segment Name Restrictions 109
8.5.3Usingcl6.mac With Pascal Programs. 109
Chapter 9: Writing 32-bit Code (Unix, Win32,DJGPP) 111
9.1Interfacingto 32-bit CPrograms e 111
9.1.1 External SymbolNames 111
9.1.2 Function Definitionsand FunctionCalls 111
9.1.3AccessingDataltems. e e e 113
9.1.4 c32.mac: Helper Macros for the 32-bit CiInterface 113
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries 114
9.2.1 Obtainingthe Addressofthe GOT 114
9.2.2 FindingYour LocalDataltems 115
9.2.3 Finding Externaland CommonDataltems 115
9.2.4 Exporting SymbolstotheLibraryUser 116
9.2.5 Calling Procedures Outside the Library., 117
9.2.6 GeneratingtheLibraryFile 117
Chapter 10: Mixing16 and 32 BitCode i i e e e e e 119
10.1 Mixed-Size JumpS L e e e e 119
10.2 Addressing Between Different-Size Segments L oo oL 119

10.3 Other Mixed-Size Instructions i i e e e e e e 120

Chapter 11: Writing 64-bit Code (Unix, Win64)« . o v i it it it e e e 123
11.1 Register Namesin64-bitMode. 123
11.2 Immediates and Displacements in 64-bitMode oL 123
11.3 Interfacing to 64-bit CPrograms (Unix) o . i e 124
11.4 Interfacing to 64-bit C Programs (Winb4). i i 125

Chapter 12: Troubleshooting. o 127
12.1Common Problems L e e e 127

12.1.1 NASM Generates InefficientCode L oL 127
12.12MyJumpsareOutofRange L 127
12.1.30RGDoesn’'tWork. L 127
12.14TIMES Doesn’tWork o o o o e e 128

Appendix A: Ndisasm. L e e 129
Allntroduction. L e 129
A2Running NDISASM. L e e e e e e e e 129

A.2.1COM Files: Specifyingan Origin. i 129
A.2.2 Code Following Data: Synchronisation., 129
A.2.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 130
A2.40therOptions L e 130

Appendix B: Instruction List L L 133

B.lIntroduction. L e e e 133
B.1.1Specialinstructions... 133
B.1.2 Conventionalinstructions L 133
B.1.3 Katmai Streaming SIMD instructions (SSE —— a.k.a. KN, XMM, MMX2). 160
B.1.4 Introduced in Deschutes but necessary for SSEsupport 161
B.1.5 XSAVE group (AVX and extended state). Lo L. 161
B.1.6 Genericmemoryoperations L Lo e e e e e e 162
B.1.7 New MMX instructions introduced inKatmai 162
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 162
B.1.9 Willamette SSE2 Cacheability Instructions 162
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 162
B.1.11 Willamette Streaming SIMD instructions (SSE2). 164
B.1.12 Prescott New Instructions (SSE3) e 166
B.LL13VMX/SVM Instructions. e e e e 166
B.1.14 Extended Page Tables VMXinstructions. 167

B.1.15 Tejas New Instructions (SSSE3) i o i i e e e 167

B.LIGAMD SSE4A L e e e e 167

B.1.17 New instructionsin Barcelona e 167
B.1.18 Penryn New Instructions (SSE4.1). o i e 168
B.1.19 Nehalem New Instructions (SSE4.2). i i i i e i e 169
B.1.20 Intel SMX e e e e 169
B.1.21 Geode (Cyrix) 3DNow! additions 169
B.1.22 Intel new instructionsin 222, L e e e e e e 169
B.1.23 Intel AESinstructions L e e e e e e e e e 169
B.1.24 Intel AVX AES instructions. L e e e e e e e 169
B.1.25 Intel instruction extension based on pub number 319433-030 dated October 2017. . . .170
B.1.26 Intel AVXinstructions L e e e e e e 170
B.1.27 Intel Carry-Less Multiplication instructions (CLMUL) 183
B.1.28 Intel AVX Carry-Less Multiplication instructions (CLMUL) 183
B.1.29 Intel Fused Multiply—-Add instructions (FMA) 183
B.1.30 Intel post-32 nm processorinstructions L oL 187
B.1.31VIA (Centaur) security instructions L e 187
B.1.32 AMD Lightweight Profiling (LWP) instructions. 188
B.1.33 AMD XOP and FMA4 instructions (SSE5) e 188
B.1.34 Intel AVX2 instructions L e e e e e e 190
B.1.35 Intel Transactional Synchronization Extensions (TSX). 194
B.1.36 Intel BMI1 and BMI2 instructions, AMD TBM instructions 194
B.1.37 Intel Memory Protection Extensions (MPX) 195
B.1.38 Intel SHA accelerationinstructions 196
B.1.39 AVX-512 mask registerinstructions. L L oo 196
B.1.40 AVX-512instructions L L e e e e e e e e 197
B.1.41 Intel memory protection keys for userspace (PKU aka PKEYs). 225
B.1.42Read ProcessorID. L e e e e e e e e e e e 225
B.1.43 New memory instructions. L Lo e 225
B.1.44 Systematic names for the hinting nop instructions 225
Appendix C: NASM Version History L o 231
CINASM2Series. . . . o v it e e e e e e e e e e e 231
C.L1Version2.13.03.t v i e e e e e e e e e e e e e e 231
C.l2Version2.13.02. . . . o it e e e e e e e e e e e e e e e e e e 231
C.13Version2.13.01. o v i e e e e e e e e e e e e e e 231
C.LAVersion2.13 L L e e e e e e e e e e e 231
C.15Version2.12.02. o e e e e e e e e e e e e e 233

12

C.1.6Version 2.12.01 o e e e e e e e e e e 233

C.L7Version2.12 o 0 e e e e e e e e e e e e e e e 233
C.18Version2.11.09. v i i e e e e e e e e e e e e e e e 233
C.19Version2.11.08 o e e e e e e e e e e e e e e e 234
C.L10Version 2.11.07 v v v o e 234
C.L11Version2.11.06 o v v i e e e e e e e e e e e e e e e e e e 234
C.1.12Version 2.11.05 L L e e e e e e e e e e e e e 234
C.LI3Version2.11.04 o o e e e e e e e e e e e e e e e 234
C.L14Version 2.11.03 o e e e e e e e e e e e e e e e 234
C.L15Version 2.11.02t vt e e e e e e e e e e e e e e e e e e e 234
C.L16Version 2.11.01 o o e e e e e e e e e e e e e e e e e e 235
C.LITVersion2.11. . . . L i it e e e e e e e e e e e e e e e e e e 235
C.1.18Version 2.10.09 L e e e e e e e e e e e e e e 236
C.119Version2.10.08 e e e e e e e e e e e e e e 236
C.1.20Version 2.10.07 o v i e e e e e e e e e e e e e e e e 236
C.1.21Version2.10.06 o o e e e e e e e e e e e e e e e e e e e 236
C.1.22Version 2.10.05 L e e e e e e e e e e 236
C.1.23Version 2.10.04 e e e e e e e e e e e 236
C.1.24Version 2.10.03 e e e e e e e e e e e e e e 237
C.1.25Version 2.10.02 o e e e e e e e e e e e e e e e e e e 237
C.1.26Version 2.10.01 L e e e e e e e e e e e e e e 237
C.L27Version2.10. o it s e e e e e e e e e e e e e e e e 237
C.1.28Version2.09.10 o e e e e e e e e e e e e e e e e 237
C.1.29Version 2.09.09 e e e e e e e e 237
C.1.30Version2.09.08 e e e e e e e e e 237
C.1.31Version 2.09.07 o o i e e e e e e e e e e e e e e e e 237
C.1.32Version 2.09.06 e e e e e e e e e e e e e e e e 238
C.1.33Version 2.09.05 e e e e e e 238
C.1.34Version 2.09.04 e e e e e e e e e e 238
C.1.35Version 2.09.03 L e e e e e e e e e 238
C.1.36Version 2.09.02 e e e e e e e e e e e e 238
C.137Version2.09.01 e e e e e e e e e e e e e 238
C.1.38Version2.09. e e e e e e e e e e e e 238
C.1.39Version 2.08.02 e e e e e e e e e e e e e 239
C.1.40Version 2.08.01 e e e e e e e e e e e e e 239
C.141Version2.08. i e e e e e e e e e 239

C.142Version 2.07. v e e e e e e e e e e e e 240

C.1A3Version2.06. i e e e e e e e e e e e e e e e 240
C.1.44Version 2.05.01 L e e e e e e e e e e e e 241
C.LA5Version2.05. o i i e e e e e e e e e e e e e 241
C.L46Version2.04. L e e e e e e e e 241
C.LA4TVersion2.03.01 o e e e e e e e e e e e 242
C.148Version2.03. i e e e e e e e e e e e e e 242
C.L49Version2.02. i e e e e e e e e e e e 243
C.150Version2.01. L e e e e e e e e e e e e e e 243
C.1.51Version2.00. L e e e e e e e e e e e e 244
C2NASM0.98SEries v v o e e e e e e e e e e e e e e e e e e 244
C.2.1Version 0.98.39. L e e e e e e e 245
C.2.2Version 0.98.38 e e e e e 245
C.2.3Version 0.98.37 o i i e e e e e e e e e 245
C.2.4Version0.98.36. e e e e e e e e e 245
C.2.5Version 0.98.35. L e e e e e e e 246
C.2.6Version 0.98.34. L e e e e e 246
C.2.7Version 0.98.33 e e e e e e e 246
C.2.8Version 0.98.32. e e e e e e e 246
C.29Version 0.98.31. L e e e e e e e e e 247
C.2.10Version 0.98.30 e e e e e e e e e e 247
C.2.11Version 0.98.28 e e e e e e e e 247
C.2.12Version 0.98.26 e e e e e e e e e e e e e e 247
C.2.13Version 0.98.25alt. L 247
C.2.14Version 0.98.25 L L e e e e e e 247
C.2.15Version 0.98.24p1o e e e e e e e e e e e e 248
C.2.16Version 0.98.24 L e e e e e e e e e 248
C.2.17Version 0.98.23 L e e e e e e e e 248
C.2.18Version 0.98.22 L e e e e e e e e e 248
C.2.19Version 0.98.21 L e e e e e e e e e e e 248
C.2.20Version 0.98.20 e e e e e e e e e 248
C.2.21Version 0.98.19 L e e e e e e e 248
C.2.22Version 0.98.18 L e e e e e e e e e 248
C.2.23Version 0.98.17 o i e e e e e e e e e e e e e 248
C.2.24Version 0.98.16 e e e e e e e e e e e 248
C.2.25Version 0.98.15 L e e e e e 248

14

C.2.26Version 0.98.14 e e e e e e e e 248

C.2.27Version 0.98.13 L e e e e e e e e e e e 248
C.2.28Version 0.98.12 L e e e e e e e e e 248
C.2.29Version 0.98.11 e e e e e e e e e e e e 248
C.2.30Version 0.98.10 e e e e e e e e e e e e e 249
C.2.31Version0.98.09 L e e e e e e e 249
C.2.32Version 0.98.08 L e e e e e e e e 249
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001 249
C.2.34Version 0.98.07released 01/28/01. o i v i i i e e 250
C.2.35Version 0.98.06f released 01/18/01 e 250
C.2.36 Version 0.98.06e released 01/09/01 o v i i i e 250
C.2.37Version 0.98pl L L e e e e e e e 250
C.2.38Version 0.98bf (bug-fixed). 250
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000 250
C.2.40Version 0.98.03 L e e e e e e e e 251
C.2.41Version0.98. L e e e e e e e 254
C.2.42Version 0.98p9 e e e e e e e e 254
C.2.43Version 0.98p8 L e e e e 254
C.2.44Version 0.98p7 o o e e e e e e e e e 255
C.2.45Version 0.98p6 e e e e e e e e e e e 255
C.2.46Version 0.98p3.7 e e e e e e e e e 255
C.2.47Version 0.98p3.6 e e e e e e e e e e 255
C.2.48Version 0.98p3.5 L e e e e e 255
C.2.49Version 0.98p3.4 L e e e e e e e 256
C.2.50Version 0.98p3.3 e e e e e e e e 256
C.2.51Version 0.98p3.2 L e e e e e e e e e 256
C.2.52Version 0.98p3-hpa. e 257
C.2.53Version 0.98 pre-release3 e 257
C.2.54Version 0.98 pre-release2 e 257
C.2.55Version 0.98 pre-releasel e 257
C3NASMO.9Series. o i e e e e e e e e e e e e e 258
C.3.1Version 0.97 released December1997 e 258
C.3.2Version 0.96 released November1997 oo 259
C.3.3Version 0.95released July 1997 e 261
C.3.4Version 0.94 released April 1997 e 262
C.3.5Version 0.93 released January 1997ot e 263

C.3.6Version 0.92released January 1997o 263

C.3.7Version 0.91 released November1996 263
C.3.8Version 0.90released October1996 e 264
Appendix D: Building NASM from Source. L 265
D.1Buildingfroma SourceArchive L 265
D.2 Building fromthe git Repository. 265
Appendix E: Contact Information L L 267
E.lWebsite e 267
El.lUserForums o o o e 267

E.1.2 Development Community L e e 267
E2ReportingBugs L e e 267

15

16

1.1

1.1.1

Chapter 1: Introduction

What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux and *BSD a.out, ELF, COFF,
Mach-0, 16-bit and 32-bit 0BJ (OMF) format, Win32 and Win64. It will also output plain binary files,
Intel hex and Motorola S-Record formats. Its syntax is designed to be simple and easy to understand,
similar to the syntax in the Intel Software Developer Manual with minimal complexity. It supports all
currently known x86 architectural extensions, and has strong support for macros.

NASM also comes with a set of utilities for handling the RDOFF custom object-file format.

License Conditions

Please see the file LICENSE, supplied as part of any NASM distribution archive, for the license
conditions under which you may use NASM. NASM is now under the so—called 2-clause BSD license,
also known as the simplified BSD license.

Copyright 1996-2017 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

+ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17

18

2.1

2.1.1

Chapter 2: Running NASM

NASM Command-Line Syntax

To assemble a file, you issue a command of the form

nasm -f <format> <filename> [-o0 <output>]

For example,

nasm -f elf myfile.asm

will assemble myfile.asminto an ELF object file myfile.o.And
nasm -f bin myfile.asm -o myfile.com

will assemble myfile.asminto araw binary filemyfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the =1 option to give a listing file name, for example:

nasm -f coff myfile.asm -1 myfile.lst

To get further usage instructions from NASM, try typing

nasm -h

As —hf, this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemis a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option -f elf when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your system is a.out, and you should use -f aout instead (Linux a.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at
all, unless it gives error messages.

The —o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent
on the object file format. For Microsoft object file formats (obj, win32 and win64), it will remove the
. asm extension (or whatever extension you like to use - NASM doesn’t care) from your source file name
and substitute . obj. For Unix object file formats (aout, as86, coff, elf32,elf64, elfx32, ieee,
macho32 and macho64) it will substitute . o. For dbg, rdf, ith and srec, it will use .dbg, . rdf,
.ith and .srec, respectively, and for the bin format it will simply remove the extension, so that
myfile.asmproduces the output filemyfile.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm. out as the output file name instead.

19

2.1.2

2.1.3

214

2.1.5

2.1.6

2.1.7

20

For situations in which this behaviour is unacceptable, NASM provides the —o command-line option,
which allows you to specify your desired output file name. You invoke -o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.23.

The - f Option: Specifying the Output File Format

If you do not supply the —f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always b-in; if you’'ve compiled your own copy of NASM,
you can redefine OF _DEFAULT at compile time and choose what you want the default to be.

Like —o, the intervening space between -f and the output file format is optional; so -f elf and
—-fe'lf are both valid.

A complete list of the available output file formats can be given by issuing the command nasm -hf.
The -1 Option: Generating a Listing File

If you supply the -1 option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and
the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.3.11) on the right. For example:

nasm -f elf myfile.asm -1 myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [1ist -], and turn it
back on with [1ist +], (the default, obviously). There is no "user form" (without the brackets). This
can be used to list only sections of interest, avoiding excessively long listings.

The -M Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

nasm -M myfile.asm > myfile.dep

The -MG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs from the -M option
in that if a nonexisting file is encountered, it is assumed to be a generated file and is added to the
dependency list without a prefix.

The —MF Option: Set Makefile Dependency File

This option can be used with the =M or -MG options to send the output to a file, rather than to stdout.
For example:

nasm -M -MF myfile.dep myfile.asm

The —MD Option: Assemble and Generate Dependencies

The -MD option acts as the combination of the -M and -MF options (i.e. a filename has to be specified.)
However, unlike the -M or —MG options, -MD does not inhibit the normal operation of the assembler.
Use this to automatically generate updated dependencies with every assembly session. For example:

nasm -f elf -o myfile.o -MD myfile.dep myfile.asm

2.1.8 The -MT Option: Dependency Target Name

The —MT option can be used to override the default name of the dependency target. This is normally
the same as the output filename, specified by the —o option.

2.1.9 The -MQ Option: Dependency Target Name (Quoted)

The -MQ option acts as the —MT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.
The default output (if no -MT or —MQ option is specified) is automatically quoted.

2.1.10 The —MP Option: Emit phony targets

2.1.11

2.1.12

2.1.13

2.1.14

When used with any of the dependency generation options, the ~MP option causes NASM to emit a
phony target without dependencies for each header file. This prevents Make from complaining if a
header file has been removed.

The —MW Option: Watcom Make quoting style

This option causes NASM to attempt to quote dependencies according to Watcom Make conventions
rather than POSIX Make conventions (also used by most other Make variants.) This quotes # as $#
rather than \#, uses & rather than \ for continuation lines, and encloses filenames containing
whitespace in double quotes.

The -F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used
by a debugger (or will be). Prior to version 2.03.01, the use of this switch did not enable output of the
selected debug info format. Use -g, see section 2.1.13, to enable output. Versions 2.03.01 and later
automatically enable —g if —F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the
command nasm -f <format> -y.Not all output formats currently support debugging output. See
section 2.1.27.

This should not be confused with the -f dbg output format option, see section 7.14.

The -g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.12.
Using —g without —F results in emitting debug info in the default format, if any, for the selected output
format. If no debug information is currently implemented in the selected output format, —g is silently
ignored.

The —X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They are the —Xvc option and the -Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

where filename. asmis the name of the source file in which the error was detected, 65 is the source
file line number on which the error was detected, error is the severity of the error (this could be
warning), and specific error message is a more detailed text message which should help
pinpoint the exact problem.

The other format, specified by —Xvc is the style used by Microsoft Visual C++ and some other programs.
It looks like this:

21

2.1.15

2.1.16

2.1.17

2.1.18

22

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also the Visual C++ outputformat, section 7.5.

The —Z Option: Send Errors to a File

Under MS-DOS it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr, this can
make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the -Z option, taking a filename argument which causes errors to be sent to
the specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err -f obj myfile.asm

In earlier versions of NASM, this option was called -E, but it was changed since -E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.21.

The —s Option: Send Errors to stdout

The -s option redirects error messages to stdout rather than stderr, so it can be redirected under
MS-DOS. To assemble the file my file.asmand pipe its output to the more program, you can type:

nasm -s -f obj myfile.asm | more

See also the -Z option, section 2.1.15.

The -1 Option: Include File Search Directories

When NASM sees the %include or %pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of the -1 option. Therefore you can include files
from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between -1 and the path name is allowed, and optional).

NASM, in the interests of complete source-code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argument to the -1 option will be
prepended exactly as written to the name of the include file. Therefore the trailing backslash in the
above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you’re really perverse, by noting that the option -1 foo will
cause ¥include '"bar.i" tosearch forthe file foobar.1..)

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more -1 directives in the NASMENV environment variable (see section 2.1.30).

For Makefile compatibility with many C compilers, this option can also be specified as - I.

The —p Option: Pre-Include a File

NASM allows you to specify files to be pre-included into your source file, by the use of the —p option. So
running

nasm myfile.asm -p myinc.inc

is equivalent to running nasm myfile.asmand placing the directive %include "myinc.inc" at
the start of the file.

For consistency with the —-I, -D and -U options, this option can also be specified as -P.

2.1.19

2.1.20

2.1.21

2.1.22

2.1.23

The -d Option: Pre-Define a Macro

Just as the —p option gives an alternative to placing %include directives at the start of a source file,
the —d option gives an alternative to placing a %define directive. You could code

nasm myfile.asm -dF00=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option —dFO0O is equivalent to
coding %define FO0O. This form of the directive may be useful for selecting assembly-time options
which are then tested using %1 fdef, for example ~dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as -D.

The —u Option: Undefine a Macro

The -u option undefines a macro that would otherwise have been pre-defined, either automatically or
by a —p or —d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm -dF00=100 -uF0O

would result in FOO not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as -U.

The -E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the —E option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to
afile, if the —o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written —e. —E in older versions of
NASM was the equivalent of the current —Z option, section 2.1.15.

The —a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation
speeds. The —a option, requiring no argument, instructs NASM to replace its powerful preprocessor
with a stub preprocessor which does nothing.

The -0 Option: Specifying Multipass Optimization
Using the -0 option, you can tell NASM to carry out different levels of optimization. The syntax is:

« —00: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

+ —01: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless
otherwise specified.

23

2.1.24

2.1.25

24

+ -0x (where x is the actual letter x): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unless the strict keyword has been used (see
section 3.7). For compatibility with earlier releases, the letter x may also be any number greater than
one. This number has no effect on the actual number of passes.

The —-0x mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital O, and is different from a small o, which is used to specify the output file
name. See section 2.1.1.

The -t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borland’s TASM. When NASM’s —t option is used,
the following changes are made:

+ local labels may be prefixed with @@ instead of .

+ size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in
NASM syntax. E.g. mov eax, [DWORD val] is valid syntax in TASM compatibility mode. Note that
you lose the ability to override the default address type for the instruction.

« unprefixed forms of some directives supported (arg, elif, else, endif, if, ifdef, ifdifi,
ifndef, include, local)

The -w and —-W Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the —w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example orphan-Tlabe'ls; you
can enable warnings of this class by the command-line option ~-w+orphan-Tlabels and disable it by
-w-orphan-Tlabels.

The current warning classes are:
« other specifies any warning not otherwise specified in any class. Enabled by default.

+ macro-params covers warnings about multi-line macros being invoked with the wrong number of
parameters. Enabled by default; see section 4.3.1 for an example of why you might want to disable it.

« macro-selfref warns if a macro references itself. Disabled by default.

+ macro-defaults warns when a macro has more default parameters than optional parameters.
Enabled by default; see section 4.3.5 for why you might want to disable it.

+ orphan-Tlabels covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM warns about this somewhat obscure condition by default; see
section 3.1 for more information.

+ number-over flow covers warnings about numeric constants which don’t fit in 64 bits. Enabled by
default.

+ gnu-elf-extensions warns if 8-bit or 16-bit relocations are used in -f elf format. The GNU
extensions allow this. Disabled by default.

+ float-overflowwarnsabout floating point overflow. Enabled by default.

2.1.26

2.1.27

+ float-denormwarns about floating point denormals. Disabled by default.

+ float-underflowwarns about floating point underflow. Disabled by default.

+ float-toolongwarnsabouttoo many digits in floating—point numbers. Enabled by default.
« user controls %warning directives (see section 4.9). Enabled by default.

+ lock warns about LOCK prefixes on unlockable instructions. Enabled by default.

+ h'lewarns aboutinvalid use of the HLE XACQUIRE or XRELEASE prefixes. Enabled by default.

« bnd warns about ineffective use of the BND prefix when a relaxed form of jmp instruction becomes
jmp short form. Enabled by default.

+ zext-reloc warns that a relocation has been zero—extended due to limitations in the output
format. Enabled by default.

« ptr warns about keywords used in other assemblers that might indicate a mistake in the source
code. Currently only the MASM PTR keyword is recognized. Enabled by default.

+ bad-pragma warns about a malformed or otherwise unparsable %pragma directive. Disabled by
default.

+ unknown-pragma warns about an unknown %pragma directive. This is not yet implemented.
Disabled by default.

+ not-my-pragma warns about a %pragma directive which is not applicable to this particular
assembly session. This is not yet implemented. Disabled by default.

+ unknown-warning warns about a -w or -W option or a [WARNING] directive that contains an
unknown warning name or is otherwise not possible to process. Disabled by default.

« allis an alias for all suppressible warning classes. Thus, -w+all enables all available warnings,
and —w-all disables warnings entirely (since NASM 2.13).

Since version 2.00, NASM has also supported the gcc-like syntax -Wwarning-class and
-Wno-warning-class instead of ~-w+warning-class and -w-warning-class, respectively;
both syntaxes work identically.

The option ~w+error or -Werror can be used to treat warnings as errors. This can be controlled on a
per warning class basis (~w+error=warning-class or -Wer ror=warning-class); if no warning-class is
specified NASM treats it as ~-w+error=all; the same applies to ~-w-error or -Wno-error, of
course.

In addition, you can control warnings in the source code itself, using the [WARNING] directive. See
section 6.10.

The -v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

For command-line compatibility with Yasm, the form —-v is also accepted for this option starting in
NASM version 2.11.05.

The -y Option: Display Available Debug Info Formats

Typing nasm -f <option> -y will display a list of the available debug info formats for the given
output format. The default format is indicated by an asterisk. For example:

nasm -f elf -y

25

2.1.28

2.1.29

2.1.30

2.2

2.2.1

2.2.2

26

valid debug formats for ’elf32’ output format are
(’*’ denotes default):
* stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

The --prefix and -—-postfix Options.

The —-prefix and —-postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g. ——prefix _ will prepend the underscore to all global and
external variables, as C requires it in some, but not all, system calling conventions.

The --allow-64bit-code-anywhere Option.

The --allow-64bit-code-anywhere option allows using 64-bit instructions in a 32-bit or 16-bit
output format. This is useful in a few situations, such as when writing code switching from 32-bit to
64-bit mode and linking into a 32-bit module. However, it is important to be aware of the restriction
the output format poses on you in terms of relocations. Use with caution!

The NASMENV Environment Variable

If you define an environment variable called NASMENV, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting -1 options in the NASMENV variable.

The value of the variable is split up at white space, so that the value -s -ic:\nasmlib\ will be
treated as two separate options. However, that means that the value ~-dNAME="my name" won’t do
what you might want, because it will be split at the space and the NASM command-line processing will
get confused by the two nonsensical words —~dNAME="my and name".

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment variable
with some character that isn’t a minus sign, then NASM will treat this character as the separator
character for options. So setting the NASMENV variable to the value !-s!-ic:\nasmlib)\ is
equivalent to settingitto -s -ic:\nasmlib\, but ! ~dNAME="my name" will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

Quick Start for MASM Users

If you’re used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with a86, this section attempts to outline the major differences between MASM’s syntax and NASM’s. If
you’re not already used to MASM, it’s probably worth skipping this section.

NASM Is Case—Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
foo, Foo or FOO. If you’re assembling to DOS or 0S/2 .0BJ files, you can invoke the UPPERCASE
directive (documented in section 7.4) to ensure that all symbols exported to other code modules are
forced to be upper case; but even then, within a single module, NASM will distinguish between labels
differing only in case.

NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should
be possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode
is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

2.2.3

224

2.2.5

2.2.6

mov ax, foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the
address, and any access to the address of a variable doesn’t. So an instruction of the form
mov ax,foo will always refer to a compile-time constant, whether it’s an EQU or the address of a
variable; and to access the contents of the variable bar, you must code mov ax, [bar].

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar. If you’re trying to get
large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offsetto make the preprocessortreatthe OFFSET keyword as a no-op.

This issue is even more confusing in a86, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes a86 to adopt NASM-style semantics; so in a86,
mov ax,var has different behaviour depending on whether var was declared as var: dw 0 (a
label) orvar dw 0 (a word-size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax,table[bx], where a memory reference is denoted by one portion
outside square brackets and another portion inside. The correct syntax for the above is
mov ax, [table+bx]. Likewise,mov ax,es:[di]iswrongandmov ax,[es:di] isright.

NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0, that you declared var as a word-size variable, and will then be able
to fill in the ambiguity in the size of the instruction mov var,2, NASM will deliberately remember
nothing about the symbol var except where it begins, and so you must explicitly code
mov word [var],2.

For this reason, NASM doesn’t support the LODS, MOVS, STOS, SCAS, CMPS, INS, or OUTS
instructions, but only supports the forms such as LODSB, MOVSW, and SCASD, which explicitly specify
the size of the components of the strings being manipulated.

NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the ASSUME directive. NASM will not
keep track of what values you choose to put in your segment registers, and will never automatically
generate a segment override prefix.

NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16-bit memory models. The programmer
has to keep track of which functions are supposed to be called with a far call and which with a near call,
and is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET
itself as an alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which
external variable definitions are far and which are near.

Floating—-Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would call
them ST (0), ST(1) and so on, and a86 would call them simply 0, 1 and so on, NASM chooses to call
them st0, st1 etc.

27

2.2.7

28

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on
a misunderstanding by the authors.

Other Differences

For historical reasons, NASM uses the keyword TWORD where MASM and compatible assemblers use
TBYTE.

NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer
might use stack db 64 dup (?), NASM requires stack resb 64, intended to be read as
‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ 0 and then writing dw ? will at least do something vaguely
useful. DUP is still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further details.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by
the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash-ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code lodsb alone on a line, and type lodab by accident, then
that’s still a valid source line which does nothing but define a label. Running NASM with the
command-line option ~w+orphan-Tlabels will cause it to warn you if you define a label alone on a
line without a trailing colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.9), _ and ?.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $Seax in NASM code to distinguish the symbol from the register. Maximum length of an
identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The instruction
may be prefixed by LOCK, REP, REPE/REPZ, REPNE/REPNZ, XACQUIRE/XRELEASE or BND/NOBND,
in the usual way. Explicit address-size and operand-size prefixes A16, A32, A64, 016 and 032, 064
are provided - one example of their use is given in chapter 10. You can also use the name of a segment
register as an instruction prefix: coding es mov [bx],ax is equivalent to coding
mov [es:bx],ax. We recommend the latter syntax, since it is consistent with other syntactic
features of the language, but for instructions such as LODSB, which has no operands and yet can
require a segment override, there is no clean syntactic way to proceed apart fromes lodsb.

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can appear on a
line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax, bp, ebx, cr0: NASM does not use the gas-style syntax in which register names
must be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants (section
3.4) or expressions (section 3.5).

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use two-operand
forms like MASM supports, or you can use NASM’s native single-operand forms in most cases. For
example, you can code:

fadd stl ; this sets stO := st0O + stl
fadd sto,stl ; so does this

29

3.2

3.2.1

3.2.2

3.2.3

30

fadd stl,st0 ; this sets stl := stl + stoO
fadd to stl ; so does this

Almost any x87 floating—point instruction that references memory must use one of the prefixes DWORD,
QWORD or TWORD to indicate what size of memory operand it refers to.

Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The current
pseudo-instructions are DB, DW, DD, DQ, DT, DO, DY and DZ; their uninitialized counterparts RESB,
RESW, RESD, RESQ, REST, RESO, RESY and RESZ; the INCBIN command, the EQU command, and the
TIMES prefix.

DB and Friends: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO, DY and DZ are used, much as in MASM, to declare initialized data in the output
file. They can be invoked in a wide range of ways:

dd 0x12345678
dd 1.234567e20
dq 0x123456789abcdefo
dq 1.234567e20
dt 1.234567e20

Ox78 Ox56 0x34 0x12
floating-point constant
eight byte constant
double-precision float
extended-precision float

db 0x55 ; just the byte 0x55
db 0x55,0x56,0x57 ; three bytes in succession
db ’a’,0x55 ; character constants are OK
db ’hello’,13,10,’S’ ; so are string constants
dw 0x1234 ; Ox34 0x12
dw ’a’ ; Ox61 Ox00 (it’s just a number)
dw ’ab’ ; Ox61 Ox62 (character constant)
dw >abc’ ; Ox61 Ox62 Ox63 Ox00 (string)
5
)
)
)
)

DT, DO, DY and DZ do not accept numeric constants as operands.

RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO, RESY and RESZ are designed to be used in the BSS section of
a module: they declare uninitialized storage space. Each takes a single operand, which is the number of
bytes, words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support
the MASM/TASM syntax of reserving uninitialized space by writing DW ? or similar things: this is what it
does instead. The operand to a RESB-type pseudo-instruction is a critical expression: see section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register
zmmvals: resz 32 ; 32 ZMM registers
INCBIN: Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the
output file. This can be handy for (for example) including graphics and sound data directly into a game
executable file. It can be called in one of these three ways:

incbin "file.dat" ; include the whole file
incbin "file.dat",1024 ; skip the first 1024 bytes

3.24

3.25

3.3

incbin "file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in
the include file search path and adds the file to the dependency lists. This macro can be overridden if
desired.

EQU: Defining Constants

EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label.
The action of EQU is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a
preprocessor definition either: the value of msglen is evaluated once, using the value of $ (see section
3.5 for an explanation of $) at the point of definition, rather than being evaluated wherever it is
referenced and using the value of $ at the point of reference.

TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM’s equivalent of the DUP syntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
times 64-$+buffer db * °

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES
can be applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference between times 100 resb 1and resb 100, except that
the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES is a critical expression (section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after
the macro phase, which allows the argument to TIMES to contain expressions such as 64-$+buffer
as above. To repeat more than one line of code, or a complex macro, use the preprocessor %rep
directive.

Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar [bx].

31

32

More complicated effective addresses, such as those involving more than one register, work in exactly
the same way:

mov eax, [ebx*2+ecx+offset]
mov ax, [bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily
look legal are perfectly all right:

mov eax, [ebx*5] ; assembles as [ebxx4+ebx]
mov eax, [labell*x2-Tlabel2] ; ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit
effective addresses [eax*2+0] and [eax+eax], and NASM will generally generate the latter on the
grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default
segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a
double-word offset field instead of the one byte NASM will normally generate, you can code
[dword eax+3]. Similarly, you can force NASM to use a byte offset for a small value which it hasn’t
seen on the first pass (see section 3.8 for an example of such a code fragment) by using
[byte eax+offset]. Asspecial cases, [byte eax] will code [eax+0] with a byte offset of zero,
and [dword eax] will code it with a double-word offset of zero. The normal form, [eax], will be
coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size
addressing (section 10.2). In particular, if you need to access data with a known offset that is larger than
will fit in a 16-bit value, if you don’t specify that it is a dword offset, nasm will cause the high word of
the offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent
and space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. Youcan
combat this behaviour by the use of the NOSPLIT keyword: [nosplit eax*2] will force
[eax*2+0] to be generated literally. [nosplit eaxx1] also has the same effect. In another way, a
split EA form [0, eax*2] can be used, too. However, NOSPLIT in [nosplit eax+eax] will be
ignored because user’s intention here is considered as [eax+eax].

In 64-bit mode, NASM will by default generate absolute addresses. The REL keyword makes it produce
RIP-relative addresses. Since this is frequently the normally desired behaviour, see the DEFAULT
directive (section 6.2). The keyword ABS overrides REL.

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands
as used by MPX instructions, but can be used for any memory reference. The basic concept of this form
is splitting base and index.

mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM
supports all currently possible ways of mib syntax:

; bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3
bndstx [rax+0x3,rbx], bndo ; NASM - split EA

3.4

3.4.1

3.4.2

bndstx [rbx*1+rax+0x3], bnd0O
bndstx [rax+rbx+3], bnd0

bndstx [rax+0x3], bnd®, rbx
bndstx [rax+0x3], rbx, bndo

GAS - ’*1’ +dindecates an 1index reg
GAS - without hints

ICC-1

ICC-2

.
>
.
>
.
>
.
>

When broadcasting decorator is used, the opsize keyword should match the size of each element.

VDIVPS zmm4, zmm5, dword [rbx]{ltol6} ; single-precision float
VDIVPS zmm4, zmm5, zword [rbx] ; packed 512 bit memory

Constants

NASM understands four different types of constant: numeric, character, string and floating—point.

Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H or X, D or T, Q or O, and B or Y for hexadecimal, decimal,
octal and binary respectively, or you can prefix 0x, for hexadecimal in the style of C, or you can prefix $
for hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, that the $ prefix
does double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $ sign must
have a digit after the $ rather than a letter. In addition, current versions of NASM accept the prefix Oh
for hexadecimal, @d or 0t for decimal, ®o or Oq for octal, and @b or @y for binary. Please note that
unlike C, a 0 prefix by itself does not imply an octal constant!

Numeric constants can have underscores (_) interspersed to break up long strings.
Some examples (all producing exactly the same code):

mov ax,200 ; decimal
mov ax,0200 still decimal

)
)
mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h ; hex
mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 ; still hex
mov ax,310q ; octal
mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0q310 ; octal yet again
mov ax,11001000b ; binary
mov ax,1100_1000b ; same binary constant
mov ax,1100_1000y ; same binary constant once more
mov ax,0bl100_1000 ; same binary constant yet again
mov ax,0yl100_1000 ; same binary constant yet again

Character Strings

A character string consists of up to eight characters enclosed in either single quotes (’ . .. ’), double
quotes ("...") or backquotes (¢ ... ¢). Single or double quotes are equivalent to NASM (except of
course that surrounding the constant with single quotes allows double quotes to appear within it and
vice versa); the contents of those are represented verbatim. Strings enclosed in backquotes support
C-style \-escapes for special characters.

The following escape sequences are recognized by backquoted strings:

\’ single quote (’)
\" double quote (")

33

\ ¢ backquote (*)

\\ backslash (\)

\? question mark (?)

\a BEL (ASCII 7)

\b BS (ASCII 8)

\t TAB (ASCII 9)

\n LF (ASCII 10)

\V VT (ASCII 11)

\f FF (ASCII 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\xFF Up to 2 hexadecimal digits - literal byte
\ul234 4 hexadecimal digits - Unicode character

\U12345678 8 hexadecimal digits - Unicode character

All other escape sequences are reserved. Note that \ @, meaning a NUL character (ASCII 0), is a special
case of the octal escape sequence

Unicode characters specified with \u or \U are converted to UTF-8. For example, the following lines
are all equivalent:

db ¢\u263a‘ ; UTF-8 smiley face

db ¢\xe2\x98\xba*“ ; UTF-8 smiley face
db OE2h, 098h, 0BAh ; UTF-8 smiley face

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is
treated as if it was an integer.

A character constant with more than one byte will be arranged with little-endian order in mind: if you
code

mov eax,’abcd’

then the constant generated is not 0x61626364, but ©x64636261, so that if you were then to store
the value into memory, it would read abcd rather than dcba. This is also the sense of character
constants understood by the Pentium’s CPUID instruction

3.4.4 String Constants

34

String constants are character strings used in the context of some pseudo-instructions, namely the DB
family and INCBIN (where it represents a filename.) They are also used in certain preprocessor
directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db *h?,’e’,’17,°1,’0’ ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used in a string-supporting context, quoted strings are treated as a string constants
even if they are short enough to be a character constant, because otherwise db ’ab’ would have the

3.4.5

3.4.6

same effect as db ’a’, which would be silly. Similarly, three-character or four-character constants
are treated as strings when they are operands to DW, and so forth.

Unicode Strings

The special operators __utfl6__, __utflele__, __utflebe__, __utf32__, __utf32le__
and __utf32be__ allows definition of Unicode strings. They take a string in UTF-8 format and
converts it to UTF-16 or UTF-32, respectively. Unless the be forms are specified, the output is

littleendian.
For example:

%define u(x) __utfle__(x)
%define w(x) __utf32__(x)
dw u(’C:\WINDOWS’), © ; Pathname in UTF-16
dd w(‘A + B = \u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed to the DB family instructions, or to character
constants in an expression context.

Floating—-Point Constants

Floating—point constants are acceptable only as arguments to DB, DW, DD, DQ, DT, and DO, or as
arguments to the special operators __float8__, __floatl6__, __float32__, __float64__,
__float86om float80e floatl1281__,and __floatl28h__.

—_—— —— —_—— —— —_——)

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM can
distinguish between dd 1, which declares an integer constant, and dd 1.0 which declares a
floating—point constant.

NASM also support C99-style hexadecimal floating-point: 0x, hexadecimal digits, period, optionally
more hexadeximal digits, then optionally a P followed by a binary (not hexadecimal) exponent in
decimal notation. As an extension, NASM additionally supports the ©h and $ prefixes for hexadecimal,
as well binary and octal floating—point, using the b or @y and Qo or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating—point constants as well.
Some examples:

db -0.2 ; "Quarter precision"

dw -0.5 IEEE 754r/SSE5 half precision
dd 1.2 an easy one

dd 1.222_222_222 underscores are permitted
dd Ox1lp+2 1.0x2722 = 4.0

dq Ox1p+32 1.0x27232 = 4 294 967 296.0
dq 1.el0 10 000 OO0 000.0

l.e+10 synonymous with 1.e10

dq l.e-10 0.000 000 000 1
3.141592653589793238462 pi

do 1.e+4000 IEEE 754r quad precision

e we we e We Wwe We we We we

The 8-bit "quarter-precision" floating—point format is sign:exponent:mantissa = 1:4:3 with an exponent
bias of 7. This appears to be the most frequently used 8-bit floating—point format, although it is not
covered by any formal standard. This is sometimes called a "minifloat."

The special operators are used to produce floating—point numbers in other contexts. They produce the
binary representation of a specific floating—point number as an integer, and can use anywhere integer
constants are used in an expression. __float80m__ and __float80e__ produce the 64-bit

35

3.4.7

3.5

3.5.1

36

mantissa and 16-bit exponent of an 80-bit floating-point number, and __float1281__ and
__float128h__ produce the lower and upper 64-bit halves of a 128-bit floating-point number,
respectively.

For example:
mov rax,__float64__(3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point number into RAX. This is
exactly equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile-time arithmetic on floating—point constants. This is because NASM is
designed to be portable - although it always generates code to run on x86 processors, the assembler
itself can run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the
presence of a floating—point unit capable of handling the Intel number formats, and so for NASM to be
able to do floating arithmetic it would have to include its own complete set of floating-point routines,
which would significantly increase the size of the assembler for very little benefit.

The special tokens __Infinity__, __QNaN__ (or __NaN__) and __SNaN__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf __Infinity__
%define NaN __QNaN__
dq +1.5, -Inf, NaN ; Double-precision constants

The %use fp standard macro package contains a set of convenience macros. See section 5.3.

Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating—point numbers.
They are suffixed with p or prefixed with @p, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.
For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33

dt 33p

Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers
which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line
containing the expression; so you can code an infinite loop using IMP $. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($-$$).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.
| : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise OR is
the lowest-priority arithmetic operator supported by NASM.

3.5.2

3.5.3

3.54

3.5.5

3.5.6

3.5.7

3.6

A: Bitwise XOR Operator

A provides the bitwise XOR operation.

&: Bitwise AND Operator

& provides the bitwise AND operation.

<< and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives a
bit-shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the
left-hand end are filled with zero rather than a sign—extension of the previous highest bit.

+ and -: Addition and Subtraction Operators
The + and - operators do perfectly ordinary addition and subtraction.
*, [/, //,%and %%: Multiplication and Division

* is the multiplication operator. / and // are both division operators: / is unsigned division and // is
signed division. Similarly, % and %% provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

Unary Operators

The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. These are +, -, ~, |, SEG, and the integer functions operators.

- negates its operand, + does nothing (it’s provided for symmetry with -), ~ computes the one’s
complement of its operand, ! is the logical negation operator.

SEG provides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the
integer functions of the i func macro package, see section 5.4.

SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to
perform this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base relative
to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES : BX with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the WRT (With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

37

3.7

3.8

38

to load ES: BX with a different, but functionally equivalent, pointer to the symbol symbo.

NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset,
where segment and offset both represent immediate values. So to call a far procedure, you could
code either of

call (seg procedure) :procedure
call weird_seg: (procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They
are not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages.
JMP works identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.
STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.23), NASM will use size
specifiers (BYTE, WORD, DWORD, QWORD, TWORD, OWORD, YWORD or ZWORD), but will give them the
smallest possible size. The keyword STRICT can be used to inhibit optimization and force a particular
operand to be emitted in the specified size. For example, with the optimizer on,and in BITS 16 mode,

push dword 33
is encoded in three bytes 66 6A 21, whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate operand 66 68 21 00 00 00.
With the optimizer off, the same code (six bytes) is generated whether the STRICT keyword was used
or not.
Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are called Critical Expressions.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM
can’t handle is code whose size depends on the value of a symbol declared after the code in question.
For example,

times (label-$) db 0
label: db ’Where am I7?°

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly
reject the slightly paradoxical code

times (label-$+1) db 0
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

3.9

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TIMES prefix is a critical expression.

Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated as a local label, which means that it is associated with the previous non-local label.
So, for example:

labell ; some code

. loop
; some more code
jne . loop
ret

label2 ; some code

. loop
; some more code
jne . loop
ret

In the above code fragment, each INE instruction jumps to the line immediately before it, because the
two definitions of .loop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in allowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-local label: the first definition of . Loop
above is really defining a symbol called 1abell.loop, and the second defines a symbol called
label2.loop. So, if you really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

Sometimes it is useful - in a macro, for instance - to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t
be non-local because it would interfere with subsequent definitions of, and references to, local labels;
and it can’t be local because the macro that defined it wouldn’t know the label’s full name. NASM
therefore introduces a third type of label, which is probably only useful in macro definitions: if a label
begins with the special prefix . . @, then it does nothing to the local label mechanism. So you could code

labell: ; a non-local label

.local: ; this dis really labell.local

..@foo: ; this is a special symbol

label2: ; another non-local label

.local: ; this is really label2.local
jmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 7.4.6),

39

40

. .imagebase is used to find out the offset from a base address of the current image in the win64
output format (see section 7.6.1). So just keep in mind that symbols beginning with a double period are
special.

4.1
4.1.1

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra
macro power. Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE

will work like a single-line macro without the backslash-newline sequence.

Single-Line Macros

The Normal Way: %define

Single-line macros are defined using the %define preprocessor directive. The definitions work in a
similar way to C; so you can do things like

%define ctrl OXx1F &
%define param(a,b) ((a)+(a)x(b))

mov byte [param(2,ebx)], ctrl ’D’
which will expand to

mov byte [(2)+(2)*(ebx)], Ox1F & ’D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion
is performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2%X
mov ax,a(8)

will evaluate in the expected way to mov ax,1+2%8, even though the macro b wasn’t defined at the
time of definition of a.

Macros defined with %define are case sensitive: after %define foo bar, only foo will expand to
bar: Foo or FOO will not. By using %idefine instead of %define (the ‘i’ stands for ‘insensitive’) you
can define all the case variants of a macro at once, so that %idefine foo bar would cause foo,
Foo, FOO, fO0 and so on all to expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion
of the same macro, to guard against circular references and infinite loops. If this happens, the
preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)

mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This behaviour
can be useful: see section 9.1 for an example of its use.

You can overload single-line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1l+xx*y

41

4.1.2

42

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass;
so foo (3) will become 1+3 whereas foo (ebx,2) will become 1+ebx*2. However, if you define

%define foo bar

then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of
the same name as a macro with parameters, and vice versa.

This doesn’t prevent single-line macros being redefined: you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macro foo is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single-line macros with %assign (see section
4.1.7).

You can pre-define single-line macros using the ‘-d’ option on the NASM command line: see section
2.1.19.

Resolving %define: %$xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro
is defined, as opposed to when the embedding macro is expanded, you need a different mechanism to
the one offered by %define. The solution is to use %xdefine, or it’s case-insensitive counterpart
%ixdefine.

Suppose you have the following code:

%define 1disTrue 1
%define -isFalse isTrue
%define 1isTrue 0

vall: db isFalse
%define 1disTrue 1

val2: db isFalse

In this case, vall is equal to 0, and val2 is equal to 1. This is because, when a single-line macro is
defined using %define, it is expanded only when it is called. As isFalse expands to isTrue, the
expansion will be the current value of isTrue. The first time it is called that is 0, and the second time it
is 1.

If you wanted isFalse to expand to the value assigned to the embedded macro isTrue at the time
that isFalse was defined, you need to change the above code to use %xdefine.

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0
vall: db isFalse

%xdefine isTrue 1

val2: db isFalse

4.1.3

4.1.4

4.1.5

Now, each time that isFalse is called, it expands to 1, as that is what the embedded macro isTrue
expanded to at the time that i sFalse was defined.

Macro Indirection: %[.. .]

The %[...] construct can be used to expand macros in contexts where macro expansion would
otherwise not occur, including in the names other macros. For example, if you have a set of macros
named Foo16, Foo32 and Foo64, you could write:

mov ax,Foo%[__BITS__] ; The Foo value

to use the builtin macro __BITS__ (see section 4.11.5) to automatically select between them.
Similarly, the two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %[...]

have, in fact, exactly the same effect.

%[...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see
section 4.3.9 for details.

Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required after %+, in order to disambiguate it from the syntax %+1 used in
multiline macros.

As an example, consider the following:

%define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure

.COMladdr RESW 1

.COM2addr RESW 1

; ..and so on
endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COMladdr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(x) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax,BDA(COMladdr)
mov bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

The Macro Name Itself: %? and %??

The special symbols %? and %?? can be used to reference the macro name itself inside a macro
expansion, this is supported for both single-and multi-line macros. %? refers to the macro name as

43

4.1.6

4.1.7

44

invoked, whereas %?7? refers to the macro name as declared. The two are always the same for
case-sensitive macros, but for case-insensitive macros, they can differ.

For example:

%idefine Foo mov %?,%??
foo
FOO

will expand to:

mov foo,Foo
mov FOO, Foo

The sequence:
%idefine keyword $%?

can be used to make a keyword "disappear", for example in case a new instruction has been used as a
label in older